
Robotics System Toolbox™
User’s Guide

R2018a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Robotics System Toolbox™ User Guide
© COPYRIGHT 2015–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
March 2015 Online only New for Version 1.0 (R2015a)
September 2015 Online only Revised for Version 1.1 (R2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 1.2 (R2016a)
September 2016 Online only Revised for Version 1.3 (R2016b)
March 2017 Online only Revised for Version 1.4 (R2017a)
September 2017 Online only Revised for Version 1.5 (R2017b)
March 2018 Online only Revised for Version 2.0 (R2018a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Coordinate System Transformations
1

Standard Units for Robotics System Toolbox 1-2

Coordinate Transformations in Robotics 1-3
Axis-Angle . 1-3
Euler Angles . 1-4
Homogeneous Transformation Matrix 1-4
Quaternion . 1-5
Rotation Matrix . 1-5
Translation Vector . 1-6
Conversion Functions and Transformations 1-6

Convert A ROS Pose Message To A Homogeneous
Transformation . 1-8

ROS Network Connection
2

ROS Network Setup . 2-2
Introduction . 2-2
Network Connection Layout . 2-2
Examples . 2-3

iii

Contents

ROS Publishers, Subscribers, Services, and Actions
3

Built-In Message Support . 3-2
ROS Message Structure . 3-2
Limitations of ROS Messages in MATLAB 3-3
ROS Data Type Conversions . 3-3
Supported Messages . 3-4

ROS Actions Overview . 3-11
Client to Server Relationship . 3-11
Performing Actions Workflow . 3-12
Action Messages and Functions . 3-14

Move a Turtlebot Robot Using ROS Actions 3-16

ROS Log Files and Transformations
4

ROS Log Files (rosbags) . 4-2
Introduction . 4-2
MATLAB rosbag Structure . 4-2
Workflow for rosbag Selection . 4-3
Limitations . 4-5

ROS Custom Message Support
5

Create Custom Messages from ROS Package 5-2

ROS Custom Message Support . 5-8
Custom Message Overview . 5-8
Custom Message Contents . 5-8
Custom Message Creation Workflow 5-11

Install Robotics System Toolbox Add-ons 5-14

iv Contents

Simulink ROS Concepts
6

Publish and Subscribe to ROS Messages in Simulink 6-2

Selecting ROS Topics, Messages, and Parameters 6-5
Selecting ROS Topics . 6-5
Selecting ROS Message Types . 6-6
Selecting ROS Parameter Names . 6-7

Configure ROS Network Addresses . 6-9

Managing Array Sizes in Simulink ROS 6-13

Connect to ROS Device . 6-15

Simulink and ROS Interaction . 6-16
MATLAB ROS Information . 6-16
Simulink ROS Node . 6-16
Differences Between Simulation and Generated Code 6-17
Publishers and Subscribers in Simulink 6-17

ROS Parameters in Simulink . 6-18
Get and Set ROS Parameters . 6-18

ROS String Parameters . 6-20
Set String Parameter on ROS Network 6-20
Get ROS String Parameter and Compare to Specified

String . 6-21
Check Image Encoding Parameter for ROS Image Message . 6-21

ROS Simulink Support and Limitations 6-23

Read A ROS Image Message In Simulink® 6-24

Read A ROS Point Cloud Message In Simulink® 6-28

Convert Coordinate System Transformations 6-33

v

Algorithm Design
7

Occupancy Grids . 7-2
Overview . 7-2
World and Grid Coordinates . 7-3
Inflation of Coordinates . 7-6
Log-Odds Representation of Probability Values 7-11

Particle Filter Parameters . 7-14
Number of Particles . 7-14
Initial Particle Location . 7-15
State Transition Function . 7-17
Measurement Likelihood Function . 7-18
Resampling Policy . 7-18
State Estimation Method . 7-19

Particle Filter Workflow . 7-21
Estimation Workflow . 7-22
Estimate Robot Position in a Loop Using Particle Filter 7-26

Probabilistic Roadmaps (PRM) . 7-30
Tune the Number of Nodes . 7-30
Tune the Connection Distance . 7-34
Create or Update PRM . 7-37

Pure Pursuit Controller . 7-41
Reference Coordinate System . 7-41
Look Ahead Distance . 7-42
Limitations . 7-43

Vector Field Histogram . 7-44
Robot Dimensions . 7-44
Cost Function Weights . 7-46
Histogram Properties . 7-47
Tune Parameters Using show . 7-51

Monte Carlo Localization Algorithm . 7-52
Overview . 7-52
State Representation . 7-53
Initialization of Particles . 7-55
Resampling Particles and Updating Pose 7-57

vi Contents

Motion and Sensor Model . 7-58

Compose a Series of Laser Scans with Pose Changes 7-63

Rigid Body Tree Robot Model . 7-68
Rigid Body Tree Components . 7-68
Robot Configurations . 7-71

Build a Robot Step by Step . 7-74

Inverse Kinematics Algorithms . 7-79
Choose an Algorithm . 7-79
Solver Parameters . 7-80
Solution Information . 7-81
References . 7-82

Manipulator Algorithms
8

2-D Path Tracing With Inverse Kinematics 8-2

Solve Inverse Kinematics for a Four-Bar Linkage 8-7

Robot Dynamics . 8-12
Dynamics Properties . 8-12
Dynamics Functions . 8-13

Calculate Manipulator Gravity Dynamics in Simulink 8-14

Compute Velocity Product for Manipulators in Simulink . . . 8-16

Compute Geometric Jacobian for Manipulators in
Simulink . 8-19

Get Transformations for Manipulator Bodies in Simulink . . . 8-21

Get Mass Matrix for Manipulators in Simulink 8-24

vii

Application Design
9

Transform Laser Scan Data From A ROS Network 9-2

Obstacle Avoidance with TurtleBot and VFH 9-4

Execute Code at a Fixed-Rate . 9-7
Introduction . 9-7
Send Fixed-rate Control Commands To A Robot 9-7
Fixed-rate Publishing of ROS Image Data 9-9
Overrun Actions for Fixed Rate Execution 9-11

Reduce Drift in 3-D Visual Odometry Trajectory Using Pose
Graphs . 9-14

Build Occupancy Map from Depth Images Using Visual
Odometry and Optimized Pose Graph 9-18

Code Generation
10

Code Generation from MATLAB Code 10-2

Code Generation Support, Usage Notes and Limitations 10-4

Generate Code to Manually Deploy a ROS Node from
Simulink . 10-7

Prerequisites . 10-7
Configure A Model for Code Generation 10-7
Configure the Build Options for Code Generation 10-9
Generate and Deploy the Code . 10-10

Accelerate Robotics Algorithms with Code Generation 10-13
Create Separate Function for Algorithm 10-13
Perform Code Generation for Algorithm 10-14
Check Performance of Generated Code 10-14
Replace Algorithm Function with MEX Function 10-15

viii Contents

Enable External Mode for Robotics System Toolbox
Models . 10-17

Tune Parameters and View Signals on Deployed Robot Models
Using External Mode . 10-18

Set Up the Simulink Model . 10-18
Deploy and Run the Model . 10-19
Monitor Signals and Tune Parameters 10-20

ix

Coordinate System Transformations

• “Standard Units for Robotics System Toolbox” on page 1-2
• “Coordinate Transformations in Robotics” on page 1-3
• “Convert A ROS Pose Message To A Homogeneous Transformation” on page 1-8

1

Standard Units for Robotics System Toolbox
Robotics System Toolbox uses a fixed set of standards for units to ensure consistency
across algorithms and applications. Unless specified otherwise, functions and classes in
this toolbox represent all values in units based on the International System of Units (SI).
The table below summarizes the relevant quantities and their SI derived units.

Quantity Unit (abbrev.)
Length meter (m)
Time second (s)
Angle radian (rad)
Velocity meter/second (m/s)
Angular Velocity radian/second (rad/s)
Acceleration meter/second2 (m/s2)
Angular Acceleration radian/second2 (rad/s2)
Mass kilogram (kg)
Force Newton (N)
Torque Newton-meter (N-m)
Moment of Inertia kilogram-meter2 (kg-m2)

See Also

More About
• “Coordinate Transformations in Robotics” on page 1-3

1 Coordinate System Transformations

1-2

Coordinate Transformations in Robotics
In this section...
“Axis-Angle” on page 1-3
“Euler Angles” on page 1-4
“Homogeneous Transformation Matrix” on page 1-4
“Quaternion” on page 1-5
“Rotation Matrix” on page 1-5
“Translation Vector” on page 1-6
“Conversion Functions and Transformations” on page 1-6

In robotics applications, many different coordinate systems can be used to define where
robots, sensors, and other objects are located. In general, the location of an object in 3-D
space can be specified by position and orientation values. There are multiple possible
representations for these values, some of which are specific to certain applications.
Translation and rotation are alternative terms for position and orientation. Robotics
System Toolbox supports representations that are commonly used in robotics and allows
you to convert between them. You can transform between coordinate systems when you
apply these representations to 3-D points. These supported representations are detailed
below with brief explanations of their usage and numeric equivalent in MATLAB®. Each
representation has an abbreviation for its name. This is used in the naming of arguments
and conversion functions that are supported in this toolbox.

At the end of this section, you can find out about the conversion functions that we offer to
convert between these representations.

Robotics System Toolbox assumes that positions and orientations are defined in a right-
handed Cartesian coordinate system.

Axis-Angle
Abbreviation: axang

A rotation in 3-D space described by a scalar rotation around a fixed axis defined by a
vector.

Numeric Representation: 1-by-3 unit vector and a scalar angle combined as a 1-by-4
vector

 Coordinate Transformations in Robotics

1-3

For example, a rotation of pi/2 radians around the y-axis would be:

axang = [0 1 0 pi/2]

Euler Angles
Abbreviation: eul

Euler angles are three angles that describe the orientation of a rigid body. Each angle is a
scalar rotation around a given coordinate frame axis. The Robotics System Toolbox
supports two rotation orders. The 'ZYZ' axis order is commonly used for robotics
applications. We also support the 'ZYX' axis order which is also denoted as “Roll Pitch
Yaw (rpy).” Knowing which axis order you use is important for apply the rotation to points
and in converting to other representations.

Numeric Representation: 1-by-3 vector of scalar angles

For example, a rotation around the y -axis of pi would be expressed as:

eul = [0 pi 0]

Note: The axis order is not stored in the transformation, so you must be aware of what
rotation order is to be applied.

Homogeneous Transformation Matrix
Abbreviation: tform

A homogeneous transformation matrix combines a translation and rotation into one
matrix.

Numeric Representation: 4-by-4 matrix

For example, a rotation of angle α around the y -axis and a translation of 4 units along the
y -axis would be expressed as:

tform =
 cos α 0 sin α 0
 0 1 0 4
-sin α 0 cos α 0
 0 0 0 1

1 Coordinate System Transformations

1-4

You should pre-multiply your transformation matrix with your homogeneous coordinates,
which are represented as a matrix of row vectors (n-by-4 matrix of points). Utilize the
transpose (') to rotate your points for matrix multiplication. For example:

points = rand(100,4);
tformPoints = (tform*points')';

Quaternion
Abbreviation: quat

A quaternion is a four-element vector with a scalar rotation and 3-element vector.
Quaternions are advantageous because they avoid singularity issues that are inherent in
other representations. The first element, w, is a scalar to normalize the vector with the
three other values, [x y z] defining the axis of rotation.

Numeric Representation: 1-by-4 vector

For example, a rotation of pi/2 around the y -axis would be expressed as:

quat = [0.7071 0 0.7071 0]

Rotation Matrix
Abbreviation: rotm

A rotation matrix describes a rotation in 3-D space. It is a square, orthonormal matrix
with a determinant of 1.

Numeric Representation: 3-by-3 matrix

For example, a rotation of α degrees around the x-axis would be:

rotm =

 1 0 0
 0 cos α -sin α
 0 sin α cos α

You should pre-multiply your rotation matrix with your coordinates, which are
represented as a matrix of row vectors (n-by-3 matrix of points). Utilize the transpose (')
to rotate your points for matrix multiplication. For example:

 Coordinate Transformations in Robotics

1-5

points = rand(100,3);
rotPoints = (rotm*points')';

Translation Vector
Abbreviation: trvec

A translation vector is represented in 3-D Euclidean space as Cartesian coordinates. It
only involves coordinate translation applied equally to all points. There is no rotation
involved.

Numeric Representation: 1-by-3 vector

For example, a translation by 3 units along the x -axis and 2.5 units along the z -axis
would be expressed as:

trvec = [3 0 2.5]

Conversion Functions and Transformations
Robotics System Toolbox provides conversion functions for the previously mentioned
transformation representations. Not all conversions are supported by a dedicated
function. Below is a table showing which conversions are supported (in blue). The
abbreviations for the rotation and translation representations are shown as well.

The names of all the conversion functions follow a standard format. They follow the form
alpha2beta where alpha is the abbreviation for what you are converting from and beta

1 Coordinate System Transformations

1-6

is what you are converting to as an abbreviation. For example, converting from Euler
angles to quaternion would be eul2quat.

All the functions expect valid inputs. If you specify invalid inputs, the outputs will be
undefined.

There are other conversion functions for converting between radians and degrees,
Cartesian and homogeneous coordinates, and for calculating wrapped angle differences.
For a full list of conversions, see “Coordinate System Transformations”.

See Also

More About
• “Standard Units for Robotics System Toolbox” on page 1-2

 See Also

1-7

Convert A ROS Pose Message To A Homogeneous
Transformation

This model subscribes to a Pose message on the ROS network. Use bus selectors to
extract the rotation and translation vectors. The Coordinate Transformation Conversion
block takes the rotation vector (euler angles) and translation vector in and gives the
homogeneous transformation for the message.

Connect to a ROS network. Create a publisher for the '/pose' topic using a
'geometry_msgs/Pose' message type.

rosinit
[pub,msg] = rospublisher('/pose','geometry_msgs/Pose');

Initializing ROS master on http://bat5811win64:55427/.
Initializing global node /matlab_global_node_73147 with NodeURI http://bat5811win64:55431/

Specify the detailed pose information. The message contains a translation (Position)
and quaternion (Orientation) to express the pose. Send the message via the publisher.

msg.Position.X = 1;
msg.Position.Y = 2;
msg.Position.Z = 3;
msg.Orientation.X = sqrt(2)/2;
msg.Orientation.Y = sqrt(2)/2;
msg.Orientation.Z = 0;
msg.Orientation.W = 0;

send(pub,msg)

Open the 'pose_to_transformation_model' model. This model subscribes to the '/
pose' topic in ROS. The bus selectors extract the quaternion and position vectors from
the ROS message. The Coordinate Transformation Conversion block then converts the
position (translation) and quaternion to a homogeneous transformation.

For more details, inspect the bus selector in the model to see how the message
information is extracted.

open_system('pose_to_transformation_model.slx')

1 Coordinate System Transformations

1-8

Run the model to display the homogeneous transformation.

Modify the position or orientation components of the message. Resend the message and
run model to see the change in the homogeneous transformation.

msg.Position.X = 4;
msg.Position.Y = 5;
msg.Position.Z = 6;
send(pub,msg)

 Convert A ROS Pose Message To A Homogeneous Transformation

1-9

Shutdown the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_73147 with NodeURI http://bat5811win64:55431/
Shutting down ROS master on http://bat5811win64:55427/.

1 Coordinate System Transformations

1-10

ROS Network Connection

2

ROS Network Setup
In this section...
“Introduction” on page 2-2
“Network Connection Layout” on page 2-2
“Examples” on page 2-3

Introduction
Setting up a ROS network allows for communication between different devices. Different
participants or nodes all register with a ROS master to share information. The ROS
master is unique and each ROS network only has one master. Each node is usually a
separate device, although one device can have multiple nodes running. MATLAB acts as
one of these nodes when using it to communicate with ROS.

All devices must be connected to the same actual or virtual network for ROS connections
to work. You can create a new ROS master in MATLAB, or you can connect to an existing
ROS master that is running on a different device. If you connect to an external master,
you have to know the IP address or hostname of the device. The initial ROS master
connection is done by calling rosinit. For more information on setting up and using the
ROS network, see “Network Connection and Exploration”.

Data communication is achieved by sending messages using entities called publishers,
subscribers, and services. Publishers send data via topic names, which subscribers then
receive over the network. Services use clients to request information from a server. For
more information on sending messages, see “Publishers and Subscribers”

Network Connection Layout
The ROS network is a collection of nodes that are all connected to the ROS master. The
number of nodes can be quite large depending on your application and devices. When
nodes get registered with the master, communication with all other nodes becomes
possible. Each node registers different publishers, subscribers, and services on the ROS
master to send and receive information between nodes. Even though all nodes in the ROS
network are registered with the master, data is exchanged directly between nodes. The
following figure shows the layout of a ROS network with two ROS nodes. It is important
that all nodes have bidirectional connectivity to share data across the network. Verifying
these connections is important during setup.

2 ROS Network Connection

2-2

Each node registers its own Node URI with the master. Other participants in the ROS
network will use this URI to contact the node. Again, this URI must be reachable by every
other node in the ROS network. To create a node in MATLAB, call rosinit. If a ROS
master is already set up, MATLAB detects it and sets the Node URI appropriately.
Otherwise, it creates both a ROS master and node that are connected.

By default, each MATLAB instance has a single “global” node. The node has a randomly-
generated name assigned to it for uniqueness. All publishers, subscribers, service clients,
and service servers will operate on this global node.

Examples
To better understand how the ROS network is set up in MATLAB, see the following
examples:

• “Get Started with ROS”
• “Connect to a ROS Network”

 ROS Network Setup

2-3

See Also
rosinit | rosnode | rostopic

More About
• “Robot Operating System (ROS)”

2 ROS Network Connection

2-4

ROS Publishers, Subscribers,
Services, and Actions

• “Built-In Message Support” on page 3-2
• “ROS Actions Overview” on page 3-11
• “Move a Turtlebot Robot Using ROS Actions” on page 3-16

3

Built-In Message Support
In this section...
“ROS Message Structure” on page 3-2
“Limitations of ROS Messages in MATLAB” on page 3-3
“ROS Data Type Conversions” on page 3-3
“Supported Messages” on page 3-4

MATLAB has support for a large library of ROS message types. How messages are
structured, limitations for ROS messages, and supported ROS data types are described to
understand how MATLAB works with ROS messages. Also, a full list of built-in message
types are shown.

ROS Message Structure
In MATLAB, ROS messages are stored as handle objects. Therefore, all the rules of handle
objects apply including copying, modifying and other performance considerations. For
more information on handle objects, see “Handle Object Behavior” (MATLAB). Each
handle points to the object for that specific message, which contains the information
relevant to that message type. The message type has a built in structure for the data it
contains.

ROS messages are similar to structure arrays with how they store the data relevant to
that message type. Each message type has a specific set of properties with their
corresponding values that are individually stored and accessed. You can specifically point
to and modify each property on its own. All messages have the MessageType property to
view the message type as a character vector. Also, you can use the showdetails
function to view the contents of the message.

Here is a sample 'geometry_msgs/Point' created in MATLAB using rosmessage. It
contains 3 properties corresponding to a 3-D point in XYZ coordinates.

pointMsg = rosmessage('geometry_msgs/Point')

pointMsg =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'

3 ROS Publishers, Subscribers, Services, and Actions

3-2

 X: 0
 Y: 0
 Z: 0

 Use showdetails to show the contents of the message

You can access and modify each property by using the created pointMsg handle.

pointMsg.Y = 2

pointMsg =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'
 X: 0
 Y: 2
 Z: 0

 Use showdetails to show the contents of the message

To explore further the ROS message structure in MATLAB, see “Work with Basic ROS
Messages”.

Limitations of ROS Messages in MATLAB
Because ROS messages use independent properties, certain messages with multiple
values cannot be validated. Because each value can be set separately, the message does
not validate the properties as a whole entity. For example, a quaternion message contains
w, x, y, and z properties, but the message does not enforce that the quaternion as a whole
is valid. When modifying properties, you should ensure you are maintaining the rules
required for that message.

Message properties can also have a variety of data types. MATLAB uses the rules set by
ROS to determine what these data types are. However, if they are to be used in
calculations, you might have to cast them to another value. The ROS data types do not
convert directly to MATLAB data types. For a detailed list of ROS data types and their
MATLAB equivalent, see “ROS Data Type Conversions” on page 3-3.

ROS Data Type Conversions
ROS message types have predetermined properties and data types for the values of those
properties. These data types must be mapped to MATLAB data types to be used in

 Built-In Message Support

3-3

MATLAB. This table summarizes how ROS data types are converted to MATLAB data
types.

ROS Data Type Description MATLAB
bool Boolean / Unsigned 8-bit

integer
logical

int8 Signed 8-bit integer int8
uint8 Unsigned 8-bit integer uint8
int16 Signed 16-bit integer int16
uint16 Unsigned 16-bit integer uint16
int32 Signed 32-bit integer int32
uint32 Unsigned 32-bit integer uint32
int64 Signed 64-bit integer int64
uint64 Unsigned 64-bit integer uint64
float32 32-bit IEEE floating point single
float64 64-bit IEEE floating point double
string ASCII string (utf-8 only) char
time Seconds and nanoseconds

as signed 32-bit integers
Time object (see rostime)

duration Seconds and nanoseconds
as signed 32-bit integers

Duration object (see
rosduration)

Supported Messages
Here is an alphabetized list of supported ROS packages. A package can contain message
types, service types, or action types.

To get a full list of supported message types, call rosmsg list in the MATLAB Command
Window.

Robotics System Toolbox supports ROS Indigo and Hydro platforms, but your own ROS
installation may have different message versions. If you would like to overwrite our
current message catalog, you can utilize the “Custom Message Support” to generate new
message definitions.

3 ROS Publishers, Subscribers, Services, and Actions

3-4

When specifying message types, input character vectors must match the character vector
listed in rosmsg list exactly. To use custom message types, MATLAB also provides a
custom message support package. For more information, see “Install Robotics System
Toolbox Add-ons” on page 5-14.

ackermann_msgs
actionlib
actionlib_msgs
actionlib_tutorials
adhoc_communication
app_manager
applanix_msgs
ar_track_alvar
arbotix_msgs
ardrone_autonomy
asmach_tutorials
audio_common_msgs
axis_camera
base_local_planner
baxter_core_msgs
baxter_maintenance_msgs
bayesian_belief_networks
blob
bond
brics_actuator
bride_tutorials
bwi_planning
bwi_planning_common
calibration_msgs
capabilities
clearpath_base
cmvision
cob_base_drive_chain
cob_camera_sensors
cob_footprint_observer
cob_grasp_generation
cob_kinematics
cob_light
cob_lookat_action
cob_object_detection_msgs
cob_perception_msgs
cob_phidgets
cob_pick_place_action
cob_relayboard

 Built-In Message Support

3-5

cob_script_server
cob_sound
cob_srvs
cob_trajectory_controller
concert_msgs
control_msgs
control_toolbox
controller_manager_msgs
costmap_2d
create_node
data_vis_msgs
designator_integration_msgs
diagnostic_msgs
dna_extraction_msgs
driver_base
dynamic_reconfigure
dynamic_tf_publisher
dynamixel_controllers
dynamixel_msgs
epos_driver
ethercat_hardware
ethercat_trigger_controllers
ethzasl_icp_mapper
explorer
face_detector
fingertip_pressure
frontier_exploration
gateway_msgs
gazebo_msgs
geographic_msgs
geometry_msgs
gps_common
graft
graph_msgs
grasp_stability_msgs
grasping_msgs
grizzly_msgs
handle_detector
hector_mapping
hector_nav_msgs
hector_uav_msgs
hector_worldmodel_msgs
household_objects_database_msgs
hrpsys_gazebo_msgs

3 ROS Publishers, Subscribers, Services, and Actions

3-6

humanoid_nav_msgs
iai_content_msgs
iai_kinematics_msgs
iai_pancake_perception_action
image_cb_detector
image_exposure_msgs
image_view2
industrial_msgs
interaction_cursor_msgs
interactive_marker_proxy
interval_intersection
jaco_msgs
joint_states_settler
jsk_footstep_controller
jsk_footstep_msgs
jsk_gui_msgs
jsk_hark_msgs
jsk_network_tools
jsk_pcl_ros
jsk_perception
jsk_rviz_plugins
jsk_topic_tools
keyboard
kingfisher_msgs
kobuki_msgs
kobuki_testsuite
laser_assembler
laser_cb_detector
leap_motion
linux_hardware
lizi
manipulation_msgs
map_merger
map_msgs
map_store
mavros
microstrain_3dmgx2_imu
ml_classifiers
mln_robosherlock_msgs
mongodb_store
mongodb_store_msgs
monocam_settler
move_base_msgs
moveit_msgs

 Built-In Message Support

3-7

moveit_simple_grasps
multimaster_msgs_fkie
multisense_ros
nao_interaction_msgs
nao_msgs
nav2d_msgs
nav2d_navigator
nav2d_operator
nav_msgs
navfn
network_monitor_udp
nmea_msgs
nodelet
object_recognition_msgs
octomap_msgs
p2os_driver
pano_ros
pcl_msgs
pcl_ros
pddl_msgs
people_msgs
play_motion_msgs
polled_camera
posedetection_msgs
pr2_calibration_launch
pr2_common_action_msgs
pr2_controllers_msgs
pr2_gazebo_plugins
pr2_gripper_sensor_msgs
pr2_mechanism_controllers
pr2_mechanism_msgs
pr2_msgs
pr2_power_board
pr2_precise_trajectory
pr2_self_test_msgs
pr2_tilt_laser_interface
program_queue
ptu_control
qt_tutorials
r2_msgs
razer_hydra
rmp_msgs
robot_mechanism_controllers
robot_pose_ekf

3 ROS Publishers, Subscribers, Services, and Actions

3-8

roboteq_msgs
robotnik_msgs
rocon_app_manager_msgs
rocon_interaction_msgs
rocon_service_pair_msgs
rocon_std_msgs
rosapi
rosauth
rosbridge_library
roscpp
roscpp_tutorials
roseus
rosgraph_msgs
rospy_message_converter
rospy_tutorials
rosruby_tutorials
rosserial_arduino
rosserial_msgs
rovio_shared
rtt_ros_msgs
s3000_laser
saphari_msgs
scanning_table_msgs
scheduler_msgs
schunk_sdh
segbot_gui
segbot_sensors
segbot_simulation_apps
segway_rmp
sensor_msgs
shape_msgs
shared_serial
sherlock_sim_msgs
simple_robot_control
smach_msgs
sound_play
speech_recognition_msgs
sr_edc_ethercat_drivers
sr_robot_msgs
sr_ronex_msgs
sr_utilities
statistics_msgs
std_msgs
std_srvs

 Built-In Message Support

3-9

stdr_msgs
stereo_msgs
stereo_wall_detection
tf
tf2_msgs
theora_image_transport
topic_proxy
topic_tools
trajectory_msgs
turtle_actionlib
turtlebot_actions
turtlebot_calibration
turtlebot_msgs
turtlesim
um6
underwater_sensor_msgs
universal_teleop
uuid_msgs
velodyne_msgs
view_controller_msgs
visp_camera_calibration
visp_hand2eye_calibration
visp_tracker
visualization_msgs
wfov_camera_msgs
wge100_camera
wifi_ddwrt
wireless_msgs
yocs_msgs
zeroconf_msgs

See Also
rosmessage | rosmsg | showdetails

Related Examples
• “Work with Basic ROS Messages”
• “Exchange Data with ROS Publishers and Subscribers”

3 ROS Publishers, Subscribers, Services, and Actions

3-10

ROS Actions Overview
In this section...
“Client to Server Relationship” on page 3-11
“Performing Actions Workflow” on page 3-12
“Action Messages and Functions” on page 3-14

Client to Server Relationship
ROS Actions have a client to server communication relationship with a specified protocol.
The actions utilize ROS topics to send goal messages from a client to the server. You can
cancel goals using the action client. After receiving a goal, the server processes it and can
give information back to the client. This information includes the status of the server, the
state of the current goal, feedback on that goal during operation, and finally a result
message when the goal is complete.

 ROS Actions Overview

3-11

Use the sendGoal function to send goals to the server. Send the goal and wait for it to
complete using sendGoalAndWait. This function allows you to return the result
message, final state of the goal and status of the server. While the server is executing a
goal, the callback function, FeedbackFcn, is called to provide data relevant to that goal
(see SimpleActionClient). Cancel the current goal using cancelGoal or all goals on
server using cancelAllGoals.

Performing Actions Workflow
In general, the following steps occur when creating and executing a ROS action on a ROS
network.

3 ROS Publishers, Subscribers, Services, and Actions

3-12

• Setup ROS action server. Check what actions are available on a ROS network by
typing rosaction list in the MATLAB command window.

• Use rosactionclient to create action clients and connect them to the server.
Specify an action type currently available on the ROS network. Use waitForServer
to wait for the action client to connect to the server.

• Send a goal using sendGoal. Define a goalMsg that corresponds to the action type.
When you create an action client using rosactionclient, a blank goalMsg is
returned. You can modify this message with your desired parameters.

 ROS Actions Overview

3-13

• When a goal status becomes 'active', the goal begins execution and the
ActivationFcn callback function is called. For more information on modifying this
callback function, see SimpleActionClient.

• While the goal status remains 'active', the server continues to execute the goal.
The feedback callback function processes information about this goals execution
periodically whenever a new feedback message is received. Use the FeedbackFcn to
access or process the message data sent from the ROS server.

• When the goal is achieved, the server returns a result message and status. Use the
ResultFcn callback to access or process the result message and status.

Action Messages and Functions
ROS actions utilize ROS messages to send goals and receive feedback about their
execution. In MATLAB, you can use callback functions to access or process the feedback
and result information from these messages. After you create the SimpleActionClient
object, specify the callback functions by assigning function handles to the properties on
the object. You can create the object using rosactionclient.

• GoalMsg — The goal message contains information about the goal. To perform an
action, you must send a goal message with updated goal information (see sendGoal).
The type of goal message depends on the type of ROS action.

• ActivationFcn — Once a goal is received on the action server, its status goes to
'pending' until the server decides to execute it. The status is then 'active'. At this
moment, MATLAB executes the callback function defined in the ActivationFcn
property of the SimpleActionClient object. There is no ROS message or data
associated with this function. By default, this function simply displays 'Goal is
active' on the MATLAB command line to notify you the goal is being executed.

The default function handle is:

@(~) disp('Goal is active')

• FeedbackFcn — The feedback function is used to process the information from the
feedback message. The type of feedback message depends on the action type. The
feedback function executes periodically during the goal operation whenever a new
feedback message is received. By default, the function displays the details of the
message using showdetails. You can do other processing on the feedback message
in the feedback function.

The default function handle is:

3 ROS Publishers, Subscribers, Services, and Actions

3-14

@(~,msg) disp(['Feedback: ',showdetails(msg)])

msg is the feedback message as an input argument to the function you define.
• ResultFcn — The result function executes when the goal has been completed. Inputs

to this function include both the result message and the status of execution. The type
of result message depends on the action type. This message, msg, and status, s, are
the same as the outputs you get when using sendGoalAndWait. This function can
also be used to trigger dependent processes after a goal is completed.

The default function handle is:

@(~,s,msg) disp(['Result with state ',char(s),': ',showdetails(msg)])

See Also
rosaction | rosactionclient

Related Examples
• “Move a Turtlebot Robot Using ROS Actions” on page 3-16

 See Also

3-15

Move a Turtlebot Robot Using ROS Actions
This example shows how to use the /turtlebot_move action with a Turtlebot robot.
The /turtlebot_move action takes a location in the robot environment and attempts to
move the robot to that location.

To run the Turtlebot ROS action server, this command is used on the ROS distribution.

roslaunch turtlebot_actions server_turtlebot_move.launch

Connect to a ROS network. You must have an ROS action server setup on this network.
Change ipaddress to the address of your ROS network.

ipaddress = '192.168.154.131';
rosinit(ipaddress);

Initializing global node /matlab_global_node_10652 with NodeURI http://192.168.154.1:62701/

View the ROS actions available on the network. You should see /turtlebot_move
available.

rosaction list

/turtlebot_move

Create a simple action client to connect to the action server. Specify the action name.
goalMsg is the goal message for you to specify goal parameters.

[client,goalMsg] = rosactionclient('/turtlebot_move');
waitForServer(client)

Set the parameters for the goal. The goalMsg contains properties for both the forward
and turn distances. Specify how far forward and what angle you would like the robot to
turn. This example moves the robot forward 2 meters.

goalMsg.ForwardDistance = 2;
goalMsg.TurnDistance = 0;

Set the feedback function to empty to have nothing output during the goal execution.
Leave FeedbackFcn as the default value to get a print out of the feedback information on
the goal execution.

client.FeedbackFcn = [];

3 ROS Publishers, Subscribers, Services, and Actions

3-16

Send the goal message to the server. Wait for it to execute and get the result message.

[resultMsg,~,~] = sendGoalAndWait(client,goalMsg)

Goal active

resultMsg =

 ROS TurtlebotMoveResult message with properties:

 MessageType: 'turtlebot_actions/TurtlebotMoveResult'
 TurnDistance: 0
 ForwardDistance: 2.0076

 Use showdetails to show the contents of the message

Disconnect from the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_10652 with NodeURI http://192.168.154.1:62701/

See Also
rosaction | rosactionclient | sendGoal | sendGoalAndWait

More About
• “ROS Actions Overview” on page 3-11

 See Also

3-17

ROS Log Files and Transformations

4

ROS Log Files (rosbags)
In this section...
“Introduction” on page 4-2
“MATLAB rosbag Structure” on page 4-2
“Workflow for rosbag Selection” on page 4-3
“Limitations” on page 4-5

Introduction
A rosbag or bag is a file format in ROS for storing ROS message data. These bags are
often created by subscribing to one or more ROS topics, and storing the received
message data in an efficient file structure. MATLAB® can read these rosbag files and help
with filtering and extracting message data. The following sections detail the structure of
rosbags in MATLAB and the workflow for extracting data from them.

MATLAB rosbag Structure
When accessing rosbag log files, call rosbag and specify the file path to the object.
MATLAB then creates a BagSelection object that contains an index of all the messages
from the rosbag.

The BagSelection object has the following properties related to the rosbag:

• FilePath: a character vector of the absolute path to the rosbag file.
• StartTime: a scalar indicating the time the first message was recorded
• EndTime: a scalar indicating the time the last message was recorded
• NumMessages: a scalar indicating how many messages are contained in the file
• AvailableTopics: a list of what topic and message types were recorded in the bag.

This is stored as table data that lists the number of messages, message type, and
message definition for each topic. For more information on table data types, see
“Access Data in a Table” (MATLAB). Here is an example output of this table:

ans =

 NumMessages MessageType MessageDefinition
 ___________ ______________________ _________________

4 ROS Log Files and Transformations

4-2

 /clock 12001 rosgraph_msgs/Clock [1x185 char]
 /gazebo/link_states 11999 gazebo_msgs/LinkStates [1x1247 char]
 /odom 11998 nav_msgs/Odometry [1x2918 char]
 /scan 965 sensor_msgs/LaserScan [1x2123 char]

• MessageList: a list of every message in the bag with rows sorted by time stamp of
when the message was recorded. This list can be indexed and you can select a portion
of the list this way. Calling select allows you to select subsets based on time stamp,
topic or message type.

Also, note that the BagSelection object contains an index for all the messages.
However, you must still use functions to extract the data. For extracting this information,
see readMessages for getting messages based on indices as a cell array or see
timeseries for reading the data of specified properties as a time series.

Workflow for rosbag Selection
When working with rosbags, there is a general procedure of how you should extract data.

• Load a rosbag: Call rosbag and the file path to load file and create BagSelection.
• Examine available messages: Examine BagSelection properties

(AvailableTopics, NumMessages, StartTime, EndTime, and MessageList) to
determine how to select a subset of messages for analysis.

• Select messages: Call select to create a selection of messages based on your
desired properties.

• Extract message data: Call readMessages or timeseries to get message data as
either a cell array or time series data structure.

• Visualize, analyze or process data: Use the extracted data for your specific
application. You can plot data or develop algorithms to process data.

The following figure also shows the workflow.

 ROS Log Files (rosbags)

4-3

4 ROS Log Files and Transformations

4-4

Limitations
There are a few limitations in the rosbag support within MATLAB:

• MATLAB can only parse uncompressed rosbags. See the ROS Wiki for a tool to
decompress a compressed rosbag.

• Only rosbags in the v2.0 format are supported. See the ROS Wiki for more information
on different bag formats

• The file path to the rosbag must always be accessible. Because the message selection
process does not retrieve any data, the file needs to be available for reading when the
message data is accessed.

See Also
BagSelection | readMessages | rosbag

Related Examples
• “Work with rosbag Logfiles”

 See Also

4-5

http://wiki.ros.org/rosbag/Commandline#decompress
http://wiki.ros.org/Bags/Format

ROS Custom Message Support

• “Create Custom Messages from ROS Package” on page 5-2
• “ROS Custom Message Support” on page 5-8
• “Install Robotics System Toolbox Add-ons” on page 5-14

5

Create Custom Messages from ROS Package
In this example, you go through the procedure for creating ROS custom messages in
MATLAB. It assumes you have already gone through the installation process shown in
“Install Robotics System Toolbox Add-ons” on page 5-14. Also, you must have a ROS
package that contains the required msg, srv, and package.xml files. The correct file
contents and folder structure are described in “Custom Message Contents” on page 5-
8. This folder structure follows the standard ROS package conventions. Therefore, if
you have any existing packages, they should match this structure.

It is recommended you start this procedure after opening a new MATLAB session to
ensure that there are no lingering changes to MATLAB preferences from previous work.
After ensuring that your custom message package is correct, note the folder path
location. Then, call rosgenmsg with the specified path and follow the steps output in the
command window. The following example has three messages, A, B, and C, that have
dependencies on each other. This example also illustrates that you can use a folder
containing multiple messages and generate them all at the same time.

To set up custom messages in MATLAB:

• Open MATLAB in a new session
• Place your custom message folder in a location and note the folder path. In this

example, a location of example packages is provided and copied to userFolder
location. Make sure that the userFolder directory exists prior to running this code.

examplePackages = fullfile(fileparts(which('rosgenmsg')), 'examples', 'packages');
userFolder = 'c:\MATLAB\custom_msgs';
copyfile(examplePackages, userFolder)

• Specify the folder path of the custom messages.

folderpath = userFolder;

(Optional) If you have an existing catkin workspace (catkin_ws), you can specify the
path to its src folder instead. However, this workspace might contain a large number
of packages and message generation will be run for all of them.

folderpath = fullfile('catkin_ws','src');
• Specify the folder path for custom message files and call rosgenmsg to create custom

messages for MATLAB.

rosgenmsg(folderpath)

5 ROS Custom Message Support

5-2

http://wiki.ros.org/Packages

Checking subfolder "A" for custom messages.

Checking subfolder "B" for custom messages.

Checking subfolder "C" for custom messages.

Building custom message files for the following packages:
 A
 B
 C

Generating MATLAB classes for message packages in
C:\MATLAB\custom_msgs\matlab_gen\jar

Loading file A-1.0.jar.
Generating MATLAB code for A/DependsOnB message type.
Generating MATLAB code for B/Standalone message type.

Loading file B-1.0.jar.

Loading file C-1.0.jar.
Generating MATLAB code for C/DependsOnB message type.

To use the custom messages, follow these steps:

1. Edit javaclasspath.txt, add the following file locations as new lines, and
save the file:

C:\MATLAB\custom_msgs\matlab_gen\jar\A-1.0.jar
C:\MATLAB\custom_msgs\matlab_gen\jar\B-1.0.jar
C:\MATLAB\custom_msgs\matlab_gen\jar\C-1.0.jar

2. Add the custom message folder to the MATLAB path by executing:

addpath('C:\MATLAB\custom_msgs\matlab_gen\msggen')
savepath

3. Restart MATLAB and verify that you can use the custom messages.
 Type "rosmsg list" and ensure that the output contains the generated
 custom message types.

Tip If you see the following warning

 Create Custom Messages from ROS Package

5-3

Objects of *** class exist - not clearing java

Try either calling rosgenmsg at the beginning of your MATLAB session or make sure
that no Java objects are created with any startup functions called.

• Then, follow steps 1–3 from the output of rosgenmsg.

1 Click the javaclasspath.txt link to open the file in the Editor. Copy and paste the
different jar file locations as new lines in the file. If this file does not exist, you will be
prompted to create it. Click Yes and then copy and paste the file locations into the
file.

The javaclasspath.txt looks like this after adding lines. Other paths may also
already exist in this file.

5 ROS Custom Message Support

5-4

2 Add the given files to the MATLAB path by running addpath and savepath in the
command window. You can either highlight the commands shown and press F9 or
copy and paste it into the MATLAB Command Window.

addpath('C:\MATLAB\custom_msgs\matlab_gen\msggen')
savepath

3 Restart MATLAB for the path changes to be applied. You can then use the custom
messages like any other ROS messages supported in Robotics System Toolbox. Verify
these changes by either calling rosmsg list and search for your message types, or
use rosmessage to create a new message.

custommsg = rosmessage('B/Standalone')

 custommsg =

 ROS Standalone message with properties:

 Create Custom Messages from ROS Package

5-5

 MessageType: 'B/Standalone'
 IntProperty: 0
 StringPropert: ''

 Use showdetails to show the contents of the message

This final verification shows that you have performed the custom message generation
process correctly. You can now send and receive these messages over a ROS network
using MATLAB and Simulink®. The new custom messages can be used like normal
message types. You should see them create objects specific to their message type and be
displayed in your workspace.

custommsg = rosmessage('B/Standalone');
custommsg2 = rosmessage('A/DependsOnB');

Custom messages can also be used with the ROS Simulink blocks.

5 ROS Custom Message Support

5-6

See Also
roboticsAddons | rosgenmsg

Related Examples
• “Install Robotics System Toolbox Add-ons” on page 5-14
• “ROS Custom Message Support” on page 5-8

 See Also

5-7

ROS Custom Message Support
In this section...
“Custom Message Overview” on page 5-8
“Custom Message Contents” on page 5-8
“Custom Message Creation Workflow” on page 5-11

Custom Message Overview
Custom messages are user-defined messages that you can use to extend the set of
message types currently supported in Robotics System Toolbox. If you are sending and
receiving supported message types, you do not need to use custom messages. To see a list
of supported message types, call rosmsg list in the MATLAB Command Window.

To install custom message support, call roboticsAddons and follow the instructions for
installation. Custom message creation requires ROS packages, which are detailed in the
ROS Wiki at Packages. After ensuring that you have valid ROS packages for custom
messages, call rosgenmsg to generate the necessary MATLAB code to use custom
messages. For an example on how to generate a ROS custom message in MATLAB,
see“Create Custom Messages from ROS Package” on page 5-2.

Custom Message Contents
ROS custom messages are specified in ROS package folders that contain a package.xml
file and optional msg and srv directories. The msg folder contains all your custom
message type definitions. You should also add all custom service type definitions to the
srv folder. For example, the package custom_robot_msgs has this folder and file
structure.

5 ROS Custom Message Support

5-8

http://wiki.ros.org/Packages

The package contains one custom message type in RobotTopic.msg and one custom
service type in RobotService.srv. MATLAB uses these files to generate the necessary
files for using the custom messages contained in the package. For more information on
creating msg and srv files, see Creating a ROS msg and srv and Defining Custom
Messages on the ROS Wiki. The syntax of these files is described on the pages specific to
msg and srv.

In all packages, you must define a package.xml file, which has the following contents:

• Name — custom_robot_msgs
• Version — 1.1.01
• Dependency — message_generation
• Other dependencies on message packages (optional) — geometry_msgs, std_msgs

Here is a sample package.xml file with the previously shown contents.

<package>
 <name>custom_robot_msgs</name>
 <version>1.1.01</version>

 <build_depend>message_generation</build_depend>
 <build_depend>geometry_msgs</build_depend>
 <build_depend>std_msgs</build_depend>
</package>

Note

• You must have write access to the custom messages folder.

 ROS Custom Message Support

5-9

http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv
http://wiki.ros.org/ROS/Tutorials/DefiningCustomMessages
http://wiki.ros.org/ROS/Tutorials/DefiningCustomMessages
http://wiki.ros.org/msg
http://wiki.ros.org/srv

• At any time, there should only be one custom messages folder on the MATLAB path.
This folder can contain multiple packages, but it is recommended that you keep them
all in one unique folder.

• ROS actions are not currently supported and will be ignored during the custom
message generation.

• ROS packages will not be processed if both of these conditions are met:

• A package with the same name already exists
• The version number of that existing package is the same

Property Naming From Message Fields

When ROS message definitions are converted to MATLAB, the field names are converted
to properties for the message object. Object properties always begin with a capital letter
and do not contain underscores. The field names are modified to fit this naming
convention. The first letter and the first letter after underscores are capitalized with
underscores removed. For example, the sensor_msgs/Image message has these fields
in ROS:

header
height
width
encoding
is_bigendian
step
data

The converted MATLAB properties are:

Header
Height
Width
Encoding
IsBigendian
Step
Data

This is also reflected when using ROS messages in Simulink. ROS message buses use the
same properties names as MATLAB.

5 ROS Custom Message Support

5-10

Custom Message Creation Workflow
Once you have your custom message structure set up as described in the previous
section, you can create the code needed to use these custom messages. First, you call
rosgenmsg with your known path to the custom message files to create MATLAB code.

Then, the two main creation steps that are handled by the rosgenmsg function. This
function takes your custom message files (.msg, .srv and package.xml) and converts
each message type to working MATLAB code. The rosgenmsg function will look for .msg
files in the msg folder and for .srv files in the srv folder. This code is a group of classes
that define the message properties when you create new custom messages. The basic
procedure takes the custom message files and converts them to .jar files and then
creates MATLAB program for each topic and service. Do not modify the .jar files
because MATLAB uses them internally.

After the rosgenmsg function creates these files, you must add the files to the Java class
path and the MATLAB path before you can use the custom messages. These steps are
given as prompts in the MATLAB Command Window:

1 Add location of files to javaclasspath.txt: Add the specified paths as new lines
of text in the javaclasspath.txt file. If this file does not exist, a message in the
command window prompts you to create it. This text file defines the static class path
for Java classes. For more information on the Java class path, see “Java Class Path”
(MATLAB).

2 Add location of class files to MATLAB path: Use addpath to add new locations of
files with the .m extension to the MATLAB path and use savepath to save these
changes.

3 Restart MATLAB and verify messages are available: After restarting MATLAB,
call rosmsg list or rosmessage to check that you can use the messages as
expected.

 ROS Custom Message Support

5-11

For an example of this procedure, see “Create Custom Messages from ROS Package” on
page 5-2. This example uses sample custom message files to create custom messages in
MATLAB.

You need to complete this procedure only once for a specific set of custom messages.
After that, you can use the new custom messages like any other ROS message in MATLAB
and take advantage of the full ROS functionality that Robotics System Toolbox provides.
Repeat this generation procedure when you would like to update or create new message
types.

You must maintain the Java class path and MATLAB path that contain the files directories.
Make sure that the MATLAB path has only one folder at a time that contains custom
message artifacts. Also, ensure you add the correct paths to the javaclasspath.txt, as
the prompt directs. Do not modify the path. This file is used to load Java files at the start
of each MATLAB session.

Sharing Custom Messages

After creating your custom message files, you can share them with other users. Other
people do not need to call rosgenmsg to access your messages. Instead, to share your
messages, access the _matlab_gen folder and follow the same three steps for specifying
paths as described previously. If you have access to these files, either over a network or
shared drive, add the matlab_gen/jar folder path to the javaclasspath.txt file and
the matlab_gen/msggen path to the MATLAB path. After restarting MATLAB, other
users can use the custom messages like any other ROS message.

Code Generation with Custom messages

Custom message and service types can be used with ROS Simulink blocks for generating
C++ code for a standalone ROS node. The generated code (.tgz archive) will include
Simulink definitions for the custom messages, but it will not include the ROS custom
message packages. When the generated code is built in the destination Linux System, it
expects the custom message packages to be available in the catkin workspace or on the
ROS_PACKAGE_PATH. Please ensure that you either install or copy the custom message
package to your Linux system before building the generated code.

See Also
roboticsAddons | rosgenmsg

5 ROS Custom Message Support

5-12

Related Examples
• “Install Robotics System Toolbox Add-ons” on page 5-14
• “Create Custom Messages from ROS Package” on page 5-2

 See Also

5-13

Install Robotics System Toolbox Add-ons
To expand the capabilities of the Robotics System Toolbox and gain additional
functionality for specific tasks and applications, use add-ons. You can find and install add-
ons using the Add-On Explorer.

1 To install add-ons relevant to the Robotics System Toolbox, type in the MATLAB
command window:

roboticsAddons
2 Select the add-on that you want. For example:

• Robotics System Toolbox Interface for ROS Custom Messages
3 Click Install, and select either:

• Install
• Download Only... — Downloads an install file to use offline.

4 Continue to follow the setup instructions on the Add-Ons Explorer to install your
add-ons.

To update or manage your add-ons, call roboticsAddons and select Manage Add-Ons.

See Also

Related Examples
• “Create Custom Messages from ROS Package” on page 5-2
• “ROS Custom Message Support” on page 5-8
• “Add-Ons” (MATLAB)

5 ROS Custom Message Support

5-14

Simulink ROS Concepts

• “Publish and Subscribe to ROS Messages in Simulink” on page 6-2
• “Selecting ROS Topics, Messages, and Parameters” on page 6-5
• “Configure ROS Network Addresses” on page 6-9
• “Managing Array Sizes in Simulink ROS” on page 6-13
• “Connect to ROS Device” on page 6-15
• “Simulink and ROS Interaction” on page 6-16
• “ROS Parameters in Simulink” on page 6-18
• “ROS String Parameters” on page 6-20
• “ROS Simulink Support and Limitations” on page 6-23
• “Read A ROS Image Message In Simulink®” on page 6-24
• “Read A ROS Point Cloud Message In Simulink®” on page 6-28
• “Convert Coordinate System Transformations” on page 6-33

6

Publish and Subscribe to ROS Messages in Simulink
This model shows how to publish and subscribe to a ROS topic using Simulink®.

open_system('simulinkPubSubExample.slx')

Use the Blank Message and Bus Assignment block to specify the X and Y values of a
'geometry_msgs/Point' message type. Open the Blank Message block mask to specify
the message type. Open the Bus Assignment block mask to select the signals you want to
assign. Remove any values with '???' from the right column. Supply the Bus Assignment
block with relevant values for X and Y.

Feed the Bus output to the Publish block. Open the block mask and choose Specify
your own as the topic source. Specify the topic, '/location' and message type,
'geoemetry_msgs/Point'.

6 Simulink ROS Concepts

6-2

Add a Subscribe block and specify the topic and message type. Feed the output Msg to a
Bus Selector and specify the selected signals in the block mask. Display the X and Y
values.

Before running the model call rosinit to connect to a ROS network.

rosinit

Initializing ROS master on http://bat5811win64:55413/.
Initializing global node /matlab_global_node_54860 with NodeURI http://bat5811win64:55417/

Set the simulation stop time to inf and run the model. You should see the xPosition
Out and yPosition Out displays show the corresponding values published to the ROS
network.

 Publish and Subscribe to ROS Messages in Simulink

6-3

Shutdown the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_54860 with NodeURI http://bat5811win64:55417/
Shutting down ROS master on http://bat5811win64:55413/.

6 Simulink ROS Concepts

6-4

Selecting ROS Topics, Messages, and Parameters
In this section...
“Selecting ROS Topics” on page 6-5
“Selecting ROS Message Types” on page 6-6
“Selecting ROS Parameter Names” on page 6-7

Selecting ROS Topics
When using Simulink with ROS, you can publish or subscribe to topics on the ROS
network. In the dialog boxes for the Publish and Subscribe blocks, you can select from a
list of topics on the ROS network. You must be currently connected to a ROS network to
get a list of topics. You can select a topic using the following:

This dialog shows the list of topics available on the ROS master. Selecting a topic from the
list automatically populates the Topic and Message type parameters for the

 Selecting ROS Topics, Messages, and Parameters

6-5

corresponding block mask dialog. If the message type is not supported in MATLAB ROS,
Simulink will throw an error. Once the topic is selected, it is saved with the block. Even if
the topic is not longer available on the network, the block will still use that topic name.

To refresh the list, close and open the dialog again.

To use a topic not currently posted on the ROS network or if you are not currently
connected, use the “Specify your own” option under the Topic Source parameter in your
block mask dialog.

Selecting ROS Message Types
Simulink ROS allows you to select from a list of message types currently supported by
MATLAB ROS when setting the Message type for Publish, Subscribe, or BlankMessage
blocks.

This is the list of all message types supported in MATLAB ROS including any custom
message types. You can begin typing in the name of your desired message type or
manually search through the list.

The selected message type is stored with the block and saved with the model.

6 Simulink ROS Concepts

6-6

Note: When using code generation, message type information is not included. You must
ensure that your Linux ROS environment has the ROS packages installed that contain the
necessary message type definitions.

Selecting ROS Parameter Names
When using the Get Parameter and Set Parameter blocks, you have the option of "Select
from ROS Network" in the block parameters, which gets a list of parameters currently on
the server. When clicking Select, you should see this dialog box.

This is the list of parameters you can select from the ROS parameter server. The
parameters that are grayed out have unsupported data types. Select a parameter name
that is not grayed out and click OK. This should auto-fill the Name and Data type into
the block parameters.

See Also
Blank Message | Get Parameter | Publish | Set Parameter | Subscribe

 See Also

6-7

Related Examples
• “ROS Parameters in Simulink” on page 6-18
• “Managing Array Sizes in Simulink ROS” on page 6-13

6 Simulink ROS Concepts

6-8

Configure ROS Network Addresses
During model initialization, Simulink connects to a ROS master and also creates a node
associated with the model. The ROS master URI and Node Host are specified in the
“Configure ROS Network Addresses” dialog. You can access this in the menu under
Tools>>Robot Operating System (ROS) by selecting “Configure ROS Network
Addresses”.

The Network Address parameter can be set to “Default” or “Custom”.

For the ROS master URI, if Network Address is set to “Default”, Simulink uses the
following rules to set the ROS Master URI:

 Configure ROS Network Addresses

6-9

• Use ROS_MASTER_URI environment variable if it is set.
• If a MATLAB global ROS node exists, use the Master URI associated with the global

node. The global node is created automatically when rosinit is called.
• Use address http://localhost:11311 if other two rules do not apply.

For the Node Host, if Network Address is set to “Default”, Simulink uses the following
rules to set the ROS Node Host:

• Use ROS_HOSTNAME environment variable if it is set.
• Use ROS_IP environment variable if it is set.
• Use hostname or IP address of the first network interface on the system if available.
• Use address http://localhost:11311 if other rules do not apply.

For both, these are the same rules that MATLAB uses to resolve its ROS network
addresses.

Otherwise, if you chose “Custom”, you can set all the variables as shown below. This
overrides the environment variables.

Note: These addresses are saved in MATLAB preferences, not the model. Therefore, this
information is shared across all Simulink models and multiple MATLAB installs of the
same release.

6 Simulink ROS Concepts

6-10

You can also use the “Test” button to ensure you can connect to the ROS master. If you
get an error, call rosinit to setup a local ROS network, or if you specified a remote ROS
master, check your settings are correct.

The custom ROS master or node host settings are not used in generated code when
deploying a standalone node.

See Also
rosinit

 See Also

6-11

Related Examples
• “Get Started with ROS in Simulink®”
• “Connect to a ROS-enabled Robot from Simulink®”

More About
• “Simulink and ROS Interaction” on page 6-16
• “Selecting ROS Topics, Messages, and Parameters” on page 6-5
• “ROS Simulink Support and Limitations” on page 6-23

6 Simulink ROS Concepts

6-12

Managing Array Sizes in Simulink ROS
A ROS message is represented as a bus signal. For more information on bus signals, see
“Buses” (Simulink).

If you are working with variable-length signals in Simulink, the non-virtual bus used for
messages cannot contain variable-length arrays as properties. All variable-length arrays
are converted to fixed-length arrays for non-virtual buses. Therefore, you must manage
the maximum size for these fixed-size arrays. To manage array sizes, select Tools>>Robot
Operating System in the menu and select “Manage Array Sizes”. If your model uses ROS
messages with variable-length arrays, the following dialog box opens. Otherwise,
Simulink displays a message.

Because the message properties have a variable length, it is possible that they can be
truncated if they exceed the maximum size set for that array. You have the option of

 Managing Array Sizes in Simulink ROS

6-13

Truncate with warning or Truncate silently. Either way, the simulation will run,
but Truncate with warning displays a warning in the Diagnostic Viewer that the
message property has been truncated. When using generated code, the warning will be
emitted using Log Statements in ROS. The warning will be a ROS_WARN_NAMED log
statement and the name is the model name.

The Message types in model section shows all the ROS message types that are
currently used by Publish, Subscribe and Blank Message blocks in your Simulink model.
You have the option to use the default limits for this message type by clicking the check
box. Otherwise, select each message type individually to set the Maximum length
(items) of each Array Property as desired. This maximum length is applied to all
instances of that message type for that model. The maximum length is also stored with
the model. Therefore, it is possible to have two models accessing the same message type
with different maximum length limits.

Managing the size of your variable-length arrays can help improve performance. If you
limit the size of the array to only include relevant data, you can process data more
effectively. However, when running these models, consider possible issues associated with
truncation and what could happen to your system if some data is ignored.

Note: If you would like to know the appropriate maximum lengths for different message
types. You can simulate the model and observe the sizes output in the warning. To see an
example of using ROS messages and working with variable-length arrays, see “Work with
ROS Messages in Simulink®”.

See Also
Publish | Subscribe

More About
• “ROS Simulink Support and Limitations” on page 6-23

6 Simulink ROS Concepts

6-14

http://wiki.ros.org/roscpp/Overview/Logging

Connect to ROS Device
When connecting to a ROS device, deploying a ROS node to a ROS device, or trying to
start and stop nodes on a ROS device, you must specify the login credentials. The
Connect to a ROS Device dialog requests the following information to connect to the
ROS device.

• Device Address — Specify the host name or IP address for the target ROS device.
• Username — Specify the user name that is used to log into the target ROS device.
• Password — Specify the password that is used to log into the target ROS device with

the specified user name.
• Remember my password — Select this parameter for your password to be saved for

all MATLAB sessions. If this parameter is not selected, MATLAB prompts for your
password whenever a connection to the ROS device is established.

• ROS folder — Specify the location of the ROS installation folder on the ROS device.
For example: /opt/ros/indigo

• Catkin workspace — Specify the location of the Catkin workspace folder on the ROS
device. For example: ~/catkin_ws_test

By clicking the Test button, you can verify your settings. The results of the test are
displayed in the Simulink Diagnostic Viewer. Use the Diagnostic Viewer to troubleshoot
any issues with connecting to your ROS device. For more information, see “View
Diagnostics” (Simulink).

See Also

Related Examples
• “Generate a Standalone ROS Node from Simulink®”

 Connect to ROS Device

6-15

Simulink and ROS Interaction
In this section...
“MATLAB ROS Information” on page 6-16
“Simulink ROS Node” on page 6-16
“Differences Between Simulation and Generated Code” on page 6-17
“Publishers and Subscribers in Simulink” on page 6-17

When using Simulink to communicate with a ROS network or work with ROS functionality,
there are several points to note regarding its interaction with MATLAB and the ROS
network.

MATLAB ROS Information
Simulink uses the functionality built into MATLAB to communicate with the ROS network
during simulation. When trying to debug issues in Simulink, you can use MATLAB to view
topics or messages available on the ROS master. For more information on ROS topics and
messages, see rosnode, rostopic, or rosmsg.

By default, Simulink uses MATLAB ROS capabilities to resolve network information such
as the address of the ROS master. This network information can also be specified in
Simulink using the “Configure ROS Network Addresses” on page 6-9 dialog.

Simulink ROS Node
Each model is associated with a unique ROS node. At the start of each simulation,
Simulink creates the node and deletes it when the simulation is terminated. If multiple
models are open and being simulated, each model will get its own dedicated node, but all
the nodes will connect to the same ROS master. This is because all the models use the
same ROS network address settings.

In simulation, the Simulink ROS node name is <modelName>_<random#>. This takes the
model name and adds a random number to the end to avoid node name conflicts.

In generated code, the node name is <modelName> (casing preserved). The model name
is also used in the archive used for generated code. Do not rename the tgz file from code
generation (e.g. ModelName.tgz). The file name is used to get the ROS package name and
initiate the build.

6 Simulink ROS Concepts

6-16

Differences Between Simulation and Generated Code
In simulation, the model execution does not match real elapsed time. The blocks in the
model are evaluated in a loop that only simulates the progression of time, and whose
speed depends on complexity of the model and computer speed. It is not intended to track
actual clock time.

In generated code, the model execution attempts to match actual elapsed time (the Fixed-
step size defines the actual time step, in seconds, that is used for the model update loop).
However, this does not guarantee real-time performance, as it is dependent on other
processes running on the Linux system and the complexity of the model. If the deployed
model is too slow to meet the execution frequency, tasks are dropped. This drop is called
an "overrun" and the model waits for the next scheduled task. For more information, see
the Tasking Mode section in the “Generate a Standalone ROS Node from Simulink®”
example.

You can also modify how your generated code runs for a deployed ROS node using
rosdevice. The rosdevice object allows you to connect to a ROS device, run nodes
that are deployed, and modify files on the device.

Publishers and Subscribers in Simulink
All publishers and subscribers created using Publish and Subscribe blocks will connect
with the ROS node for that model. They are created during the model initialization and
topic names are resolved at the same time. The publishers and subscribers are deleted
when the simulation is terminated.

NOTE: If a custom topic name is specified for a Subscribe block, the topic is not required
to exist when the model is initialized. The Subscribe block will output blank messages
until it receives a message on the topic name you specify. This allows you to setup and
test models before the rest of the network has been setup.

 Simulink and ROS Interaction

6-17

ROS Parameters in Simulink

Get and Set ROS Parameters
This model gets and sets ROS parameters using Simulink®. This example illustrates how
to use ROS parameters in Simulink and to share data over the ROS network. An integer
value is set as a parameter on the ROS network. This integer is retrieved from the
parameter server and compared to a constant. The output Boolean from the comparison is
also set on the network. Change the constant block in the top left (blue) when you run the
model to set network parameters based on user input conditions.

You must be connected to a ROS network. Call rosinit in the MATLAB® command line.

6 Simulink ROS Concepts

6-18

See Also
Get Parameter | Set Parameter

More About
• “ROS String Parameters” on page 6-20

 See Also

6-19

ROS String Parameters

In this section...
“Set String Parameter on ROS Network” on page 6-20
“Get ROS String Parameter and Compare to Specified String” on page 6-21
“Check Image Encoding Parameter for ROS Image Message” on page 6-21

To use ROS string parameters in Simulink, cast them to uint8 arrays. These examples
show how to get, set, compare, and manipulate strings for ROS parameters. To run these
examples, you must first set up a ROS network. Use rosinit.

Set String Parameter on ROS Network
To create your string parameter, use a Constant block and cast it to uint8 by specifying
uint8(['my_string_parameter']) in Constant Value of the block mask. The string
is passed into the Set Parameter block along with the extra input, Length, specified with a
second Constant block. The Length refers to the maximum expected string length and is
required for all string parameters. For more information, see the Set Parameter block.

6 Simulink ROS Concepts

6-20

Get ROS String Parameter and Compare to Specified String
You can compare string parameters to specified strings to validate settings or trigger
subsystems. To get the parameter off the server, use the Get Parameter block. Then, use
the MATLAB Function block to compare the parameter to a uint8 string from a Constant
block. This model checks to see if a previously set camera format parameter is named
'jpeg'.

The following code is used inside the stringCompare MATLAB Function block. The
function compares each character of its two input strings to see if they match. The output
is a single Boolean indicating whether the strings match.

function y = stringCompare(str1,str2)
%#codegen
minLength = min(length(str1),length(str2));
st1 = str1(1:minLength);
st2 = str2(1:minLength);
y = all(st1(:)==st2(:));

Check Image Encoding Parameter for ROS Image Message
This model shows how to access string parameters and use them to trigger subsystem
operations. It gets an image format off the set up ROS parameter server. It is retrieved as
a uint8 array that is compared using the strcmp MATLAB function block. When a new
image is received from the Subscribe block and the format is uint8('jpeg'), it triggers
the "Process Image" block to perform a task on the image data.

 ROS String Parameters

6-21

This model requires you to be connected to a ROS network. Call rosinit in the
MATLAB® command window. The '/camera/rgb/image_raw/compressed/format'
parameter must be set and the '/camera/rgb/image_raw/compressed' topic must
have image messages being published. Use the buttons in the model to set the image
format parameters to check the strcmp block. The eq output should be 1 when the
parameter is set to 'jpeg'.

See Also
Blocks
Get Parameter | Set Parameter

More About
• “ROS Parameters in Simulink” on page 6-18

6 Simulink ROS Concepts

6-22

ROS Simulink Support and Limitations
To see a full list of ROS support in Simulink, see “ROS Access with Simulink”.

Robotics System Toolbox does not support the following ROS features in Simulink:

• ROS Services
• ROS Actions
• Transformation trees

If your application requires these features, consider using MATLAB ROS functionality. You
can write a ROS node using MATLAB that can publish services, actions, and
transformation trees to a topic as ROS messages. Simulink can then subscribe to that
topic to work with those messages. The following functions are used in MATLAB to work
with these features:

• ROS Services: rosservice, rossvcserver, rossvcclient, call
• ROS Actions: rosaction, rosactionclient
• Transformation trees: rostf, transform, getTransform

See Also

Related Examples
• “ROS String Parameters” on page 6-20
• “Simulink and ROS Interaction” on page 6-16
• “Managing Array Sizes in Simulink ROS” on page 6-13

 ROS Simulink Support and Limitations

6-23

Read A ROS Image Message In Simulink®
This example requires Computer Vision System Toolbox® and Robotics System Toolbox®.

Start a ROS network.

rosinit

Initializing ROS master on http://bat5811win64:55449/.
Initializing global node /matlab_global_node_09948 with NodeURI http://bat5811win64:55454/

Load sample messages to send including a sample image message, img. Create a
publisher to send a ROS Image message on the '/image_test' topic. Specify the
message type as '/sensor_msgs/Image'. Send the image message.

exampleHelperROSLoadMessages
pub = rospublisher('/image_test','sensor_msgs/Image');
send(pub,img)

Open the Simulink® model for subscribing to the ROS message and reading in the image
from the ROS.

Ensure that the Subscribe block is subscribing to the '/image_test' topic. In the
menu under Tools > Robot Operating System > Manage Array Lengths, verify the
Data array has a maximum length greater than the sample image (921,600 pixels).

open_system('read_image_example_model.slx')

6 Simulink ROS Concepts

6-24

Run the model. The Video Viewer shows the sample image.

 Read A ROS Image Message In Simulink®

6-25

Stop the simulation and shut down the ROS network.

6 Simulink ROS Concepts

6-26

rosshutdown

Shutting down global node /matlab_global_node_09948 with NodeURI http://bat5811win64:55454/
Shutting down ROS master on http://bat5811win64:55449/.

 Read A ROS Image Message In Simulink®

6-27

Read A ROS Point Cloud Message In Simulink®
Read in a point cloud message from a ROS network. Calculate the center of mass of the
coordinates and display the point cloud as an image.

This example requires Computer Vision System Toolbox® and Robotics System Toolbox®.

Start a ROS network.

rosinit

Initializing ROS master on http://bat5811win64:55519/.
Initializing global node /matlab_global_node_44676 with NodeURI http://bat5811win64:55523/

Load sample messages to send including a sample point cloud message, ptcloud. Create
a publisher to send an ROS PointCloud2 message on the '/ptcloud_test' topic.
Specify the message type as 'sensor_msgs/PointCloud2'. Send the point cloud
message.

exampleHelperROSLoadMessages
pub = rospublisher('/ptcloud_test','sensor_msgs/PointCloud2');
send(pub,ptcloud)

Open the Simulink® model for subscribing to the ROS message and reading in the point
cloud from the ROS.

Ensure that the Subscribe block is subscribing to the '/ptcloud_test' topic. In the
menu under Tools > Robot Operating System > Manage Array Lengths, verify the
Data array has a maximum length greater than the sample image (9,830,400 points).

The model only displays the RGB values of the point cloud as an image. The XYZ output is
used to calculate the center of mass (mean) of the coordinates using a MATLAB Function
block. All NaN values are ignored.

open_system('read_point_cloud_example_model.slx')

6 Simulink ROS Concepts

6-28

 Read A ROS Point Cloud Message In Simulink®

6-29

Run the model. The Video Viewer shows the sample point cloud as an image. The
output center of mass is [-0.2869 -0.0805 2.232] for this point cloud.

6 Simulink ROS Concepts

6-30

Stop the simulation and shut down the ROS network.

rosshutdown

Shutting down global node /matlab_global_node_44676 with NodeURI http://bat5811win64:55523/
Shutting down ROS master on http://bat5811win64:55519/.

The pointCloudCOM function block contains the following code for calculating the center
of mass of the coordinates.

 Read A ROS Point Cloud Message In Simulink®

6-31

function comXYZ = pointCloudCOM(xyzPoints)
% Compute the center of mass of a point cloud based on the input NxMx3
% matrix.

% Turn matrix into vectors.
xPoints = reshape(xyzPoints(:,:,1),numel(xyzPoints(:,:,1)),1);
yPoints = reshape(xyzPoints(:,:,2),numel(xyzPoints(:,:,2)),1);
zPoints = reshape(xyzPoints(:,:,3),numel(xyzPoints(:,:,3)),1);

% Calculate the mean for each set of coordinates.
xMean = mean(xPoints,'omitnan');
yMean = mean(yPoints,'omitnan');
zMean = mean(zPoints,'omitnan');

comXYZ = [xMean,yMean,zMean];

end

6 Simulink ROS Concepts

6-32

Convert Coordinate System Transformations
This model shows how to convert some basic coordinate system transformations into
other coordinate systems. Input vectors are expected to be vertical vectors.

 Convert Coordinate System Transformations

6-33

Algorithm Design

• “Occupancy Grids” on page 7-2
• “Particle Filter Parameters” on page 7-14
• “Particle Filter Workflow” on page 7-21
• “Probabilistic Roadmaps (PRM)” on page 7-30
• “Pure Pursuit Controller” on page 7-41
• “Vector Field Histogram” on page 7-44
• “Monte Carlo Localization Algorithm” on page 7-52
• “Compose a Series of Laser Scans with Pose Changes” on page 7-63
• “Rigid Body Tree Robot Model” on page 7-68
• “Build a Robot Step by Step” on page 7-74
• “Inverse Kinematics Algorithms” on page 7-79

7

Occupancy Grids
In this section...
“Overview” on page 7-2
“World and Grid Coordinates” on page 7-3
“Inflation of Coordinates” on page 7-6
“Log-Odds Representation of Probability Values” on page 7-11

Overview
Occupancy grids are used to represent a robot workspace as a discrete grid. Information
about the environment can be collected from sensors in real time or be loaded from prior
knowledge. Laser range finders, bump sensors, cameras, and depth sensors are
commonly used to find obstacles in your robot’s environment.

Occupancy grids are used in robotics algorithms such as path planning (see
robotics.PRM). They are used in mapping applications for integrating sensor
information in a discrete map, in path planning for finding collision-free paths, and for
localizing robots in a known environment (see robotics.MonteCarloLocalization).
You can create maps with different sizes and resolutions to fit your specific application.

2-D occupancy grids have two representations:

• Binary occupancy grid (see robotics.BinaryOccupancyGrid)
• Probability occupancy grid (see robotics.OccupancyGrid)

A binary occupancy grid uses true values to represent the occupied workspace
(obstacles) and false values to represent the free workspace. This grid shows where
obstacles are and whether a robot can move through that space. Use a binary occupancy
grid if memory size is a factor in your application.

A probability occupancy grid uses probability values to create a more detailed map
representation. This representation is the preferred method for using occupancy grids.
This grid is commonly referred to as simply an occupancy grid. Each cell in the occupancy
grid has a value representing the probability of the occupancy of that cell. Values close to
1 represent a high certainty that the cell contains an obstacle. Values close to 0 represent
certainty that the cell is not occupied and obstacle free. The probabilistic values can give
better fidelity of objects and improve performance of certain algorithm applications.

7 Algorithm Design

7-2

Binary and probability occupancy grids share several properties and algorithm details.
Grid and word coordinates apply to both types of occupancy grids. The inflation method
also applies to both grids, but each grid implements it differently. The effects of the log-
odds representation and probability saturation apply to probability occupancy grids only.

World and Grid Coordinates
When working with occupancy grids in MATLAB, you can use either world or grid
coordinates.

The absolute reference frame in which the robot operates is referred to as the world
frame in the occupancy grid. Most Robotics System Toolbox operations are performed in
the world frame, and it is the default selection when using MATLAB functions in this
toolbox. World coordinates are used as an absolute coordinate frame with a fixed origin,
and points can be specified with any resolution. However, all locations are converted to
grid locations because of data storage and resolution limits on the map itself.

Grid coordinates define the actual resolution of the occupancy grid and the finite
locations of obstacles. The origin of grid coordinates is in the top-left corner of the grid,
with the first location having an index of (1,1). However, the GridLocationInWorld
property of the occupancy grid in MATLAB defines the bottom-left corner of the grid in
world coordinates. When creating an occupancy grid object, properties such as
XWorldLimits and YWorldLimits are defined by the input width, height, and
resolution. This figure shows a visual representation of these properties and the
relation between world and grid coordinates.

 Occupancy Grids

7-3

Grid Coordinates from World Coordinate Inputs

When setting occupancy locations, you can input the locations in either grid or world
coordinates. However, based on the limits of the grid, the locations are set to the closest
grid locations. Edges of the grid belong to the lower-left grid location.

Show how locations are interpreted on the grid by creating an occupancy grid and setting
points as occupied by obstacles. Then, plot the original input points over the map to show
how they are interpreted. If any point within the grid cell is set as occupied, the entire
grid cell is set as occupied.

Create an occupancy grid map and set obstacle locations.

map = robotics.BinaryOccupancyGrid(10,10,5);
xy = [5 5; 4.3 4.4; 5.6 5.3];
setOccupancy(map,xy,1);

7 Algorithm Design

7-4

Display the map, original points, and set the axes limits to zoom in. You can see how the
edge points affect the entire grid location status.

show(map);
hold on
plot(xy(:,1),xy(:,2),'xr','MarkerSize', 20)
grid on
set(gca,'XTick',0:0.2:10,'YTick',0:0.2:10)
xlim([4 6])
ylim([4 6])

 Occupancy Grids

7-5

Inflation of Coordinates
Both the binary and normal occupancy grids have an option for inflating obstacles. This
inflation is used to add a factor of safety on obstacles and create buffer zones between the
robot and obstacle in the environment. The inflate method of an occupancy grid object
converts the specified radius to the number of cells rounded up from the
resolution*radius value. Each algorithm uses this cell value separately to modify
values around obstacles.

Binary Occupancy Grid

The robotics.BinaryOccupancyGrid.inflate method takes each occupied cell and
directly inflates it by adding occupied space around each point. This basic inflation
example illustrates how the radius value is used.

Inflate Obstacles in a Binary Occupancy Grid

This example shows how to create the map, set the obstacle locations and inflate it by a
radius of 1m. Extra plots on the figure help illustrate the inflation and shifting due to
conversion to grid locations.

Create binary occupancy grid. Set occupancy of position [5,5].

map = robotics.BinaryOccupancyGrid(10,10,5);
setOccupancy(map,[5 5], 1);

Inflate occupied spaces on map by 1m.

inflate(map,1);
show(map)

7 Algorithm Design

7-6

Plot original location, converted grid position and draw the original circle. You can see
from this plot, that the grid center is [4.9 4.9], which is shifted from the [5 5] location. A
1m circle is drawn from there and notice that any cells that touch this circle are marked
as occupied. The figure is zoomed in to the relevant area.

hold on
theta = linspace(0,2*pi);
x = 4.9+cos(theta); % x circle coordinates
y = 4.9+sin(theta); % y circle coordinates
plot(5,5,'*b','MarkerSize',10) % Original location
plot(4.9,4.9,'xr','MarkerSize',10) % Grid location center
plot(x,y,'-r','LineWidth',2); % Circle of radius 1m.
axis([3.6 6 3.6 6])
ax = gca;

 Occupancy Grids

7-7

ax.XTick = [3.6:0.2:6];
ax.YTick = [3.6:0.2:6];
grid on
legend('Original Location','Grid Center','Inflation')

As you can see from the above figure, even cells that barely overlap with the inflation
radius are labeled as occupied.

Occupancy Grids

The robotics.OccupancyGrid.inflate method uses the inflation radius to perform
probabilistic inflation. Probabilistic inflation acts as a local maximum operator and finds
the highest probability values for nearby cells. The inflate method uses this definition
to inflate the higher probability values throughout the grid. This inflation increases the

7 Algorithm Design

7-8

size of any occupied locations and creates a buffer zone for robots to navigate around
obstacles. This example shows how the inflation works with a range of probability values.

Inflate Obstacles in an Occupancy Grid

This example shows how the inflate method performs probabilistic inflation on obstacles
to inflate their size and create a buffer zone for areas with a higher probability of
obstacles.

Create a 10m x 10m empty map.

map = robotics.OccupancyGrid(10,10,10);

Update occupancy of world locations with specific values in pvalues.

map = robotics.OccupancyGrid(10,10,10);
x = [1.2; 2.3; 3.4; 4.5; 5.6];
y = [5.0; 4.0; 3.0; 2.0; 1.0];

pvalues = [0.2 0.4 0.6 0.8 1];

updateOccupancy(map,[x y],pvalues)
figure
show(map)

 Occupancy Grids

7-9

Inflate occupied areas by a given radius. Larger occupancy values are written over
smaller values. You can copy your map beforehand to revert any unwanted changes.

savedMap = copy(map);
inflate(map,0.5)
figure
show(map)

7 Algorithm Design

7-10

Log-Odds Representation of Probability Values
When using occupancy grids with probability values, the goal is to estimate the
probability of obstacle locations for use in real-time robotics applications. The
OccupancyGrid class uses a log-odds representation of the probability values for each
cell. Each probability value is converted to a corresponding log-odds value for internal
storage. The value is converted back to probability when accessed. This representation
efficiently updates probability values with the fewest operations. Therefore, you can
quickly integrate sensor data into the map.

The log-odds representation uses the following equation:

 Occupancy Grids

7-11

p
p

p
log log()=

-1

Note Log-odds values are stored as int16 values. This data type limits the resolution of
probability values to ±0.001 but greatly improves memory size and allows for creation of
larger maps.

Probability Saturation

When updating an occupancy grid with observations using the log-odds representation,
the values have a range of –∞ to ∞. This range means if a robot observes a location such

7 Algorithm Design

7-12

as a closed door multiple times, the log-odds value for this location becomes
unnecessarily high, or the value probability gets saturated. If the door then opens, the
robot needs to observe the door open many times before the probability changes from
occupied to free. In dynamic environments, you want the map to react to changes to more
accurately track dynamic objects.

To prevent this saturation, update the ProbabilitySaturation property, which limits
the minimum and maximum probability values allowed when incorporating multiple
observations. This property is an upper and lower bound on the log-odds values and
enables the map to update quickly to changes in the environment. The default minimum
and maximum values of the saturation limits are [0.001 0.999]. For dynamic
environments, the suggested values are at least [0.12 0.97]. Consider modifying this
range if the map does not update rapidly enough for multiple observations.

See Also
readBinaryOccupancyGrid | readOccupancyGrid |
robotics.BinaryOccupancyGrid | robotics.OccupancyGrid |
robotics.OccupancyMap3D | writeBinaryOccupancyGrid | writeOccupancyGrid

 See Also

7-13

Particle Filter Parameters

In this section...
“Number of Particles” on page 7-14
“Initial Particle Location” on page 7-15
“State Transition Function” on page 7-17
“Measurement Likelihood Function” on page 7-18
“Resampling Policy” on page 7-18
“State Estimation Method” on page 7-19

A particle filter is a recursive, Bayesian state estimator that uses discrete particles to
approximate the posterior distribution of the estimated state.

To use the particle filter properly, you must specify parameters such as the number of
particles, the initial particle location, and the state estimation method. Also, if you have a
specific motion and sensor model, you specify these parameters in the state transition
function and measurement likelihood function, respectively. The details of these
parameters are detailed on this page. For more information on the particle filter workflow,
see “Particle Filter Workflow” on page 7-21.

Number of Particles
To specify the number of particles, use the initialize method. Each particle is a
hypothesis of the current state. The particles are distributed across your state space
based on either a specified mean and covariance, or on the specified state bounds.
Depending on the StateEstimationMethod property, either the particle with the
highest weight or the mean of all particles is taken to determine the best state estimate.

The default number of particles is 1000. Unless performance is an issue, do not use fewer
than 1000 particles. A higher number of particles can improve the estimate but sacrifices
performance speed, because the algorithm has to process more particles. Tuning the
number of particles is the best way to affect your particle filters performance.

These results, which are based on the “Estimate Robot Position in a Loop Using Particle
Filter” on page 7-26 example, show the difference in tracking accuracy when using 100
particles and 5000 particles.

7 Algorithm Design

7-14

Initial Particle Location
When you initialize your particle filter, you can specify the initial location of the particles
using:

• Mean and covariance
• State bounds

Your initial state is defined as a mean with a covariance relative to your system. This
mean and covariance correlate to the initial location and uncertainty of your system. The
ParticleFilter object distributes particles based on your covariance around the given
mean. The algorithm uses this distribution of particles to get the best estimation of state,

 Particle Filter Parameters

7-15

so an accurate initialization of particles helps to converge to the best state estimation
quickly.

If an initial state is unknown, you can evenly distribute your particles across a given state
bounds. The state bounds are the limits of your state. For example, when estimating the
position of a robot, the state bounds are limited to the environment that the robot can
actually inhabit. In general, an even distribution of particles is a less efficient way to
initialize particles to improve the speed of convergence.

The plot shows how the mean and covariance specification can cluster particles much
more effectively in a space rather than specifying the full state bounds.

7 Algorithm Design

7-16

State Transition Function
The state transition function, StateTransitionFcn, of a particle filter helps to evolve
the particles to the next state. It is used during the prediction step of the “Particle Filter
Workflow” on page 7-21. In the ParticleFilter object, the state transition function is
specified as a callback function that takes the previous particles, and any other necessary
parameters, and outputs the predicted location. The function header syntax is:

function predictParticles = stateTransitionFcn(pf,prevParticles,varargin)

By default, the state transition function assumes a Gaussian motion model with constant
velocities. The function uses a Gaussian distribution to determine the position of the
particles in the next time step.

For your application, it is important to have a state transition function that accurately
describes how you expect the system to behave. To accurately evolve all the particles, you
must develop and implement a motion model for your system. If particles are not
distributed around the next state, the ParticleFilter object does not find an accurate
estimate. Therefore, it is important to understand how your system can behave so that
you can track it accurately.

You also must specify system noise in StateTransitionFcn. Without random noise
applied to the predicted system, the particle filter does not function as intended.

Although you can predict many systems based on their previous state, sometimes the
system can include extra information. The use of varargin in the function enables you to
input any extra parameters that are relevant for predicting the next state. When you call
predict, you can include these parameters using:

predict(pf,param1,param2)

Because these parameters match the state transition function you defined, calling
predict essentially calls the function as:

predictParticles = stateTransitionFcn(pf,prevParticles,param1,param2)

The output particles, predictParticles, are then either used by the “Measurement
Likelihood Function” on page 7-18 to correct the particles, or used in the next prediction
step if correction is not required.

 Particle Filter Parameters

7-17

Measurement Likelihood Function
After predicting the next state, you can use measurements from sensors to correct your
predicted state. By specifying a MeasurementLikelihoodFcn in the ParticleFilter
object, you can correct your predicted particles using the correct function. This
measurement likelihood function, by definition, gives a weight for the state hypotheses
(your particles) based on a given measurement. Essentially, it gives you the likelihood that
the observed measurement actually matches what each particle observes. This likelihood
is used as a weight on the predicted particles to help with correcting them and getting
the best estimation. Although the prediction step can prove accurate for a small number
of intermediate steps, to get accurate tracking, use sensor observations to correct the
particles frequently.

The specification of the MeasurementLikelihoodFcn is similar to the
StateTransitionFcn. It is specified as a function handle in the properties of the
ParticleFilter object. The function header syntax is:

function likelihood = measurementLikelihoodFcn(pf,predictParticles,measurement,varargin)

The output is the likelihood of each predicted particle based on the measurement given.
However, you can also specify more parameters in varargin. The use of varargin in
the function enables you to input any extra parameters that are relevant for correcting
the predicted state. When you call correct, you can include these parameters using:

correct(pf,measurement,param1,param2)

These parameters match the measurement likelihood function you defined:

likelihood = measurementLikelihoodFcn(pf,predictParticles,measurement,param1,param2)

The correct function uses the likelihood output for particle resampling and giving
the final state estimate.

Resampling Policy
The resampling of particles is a vital step for continuous tracking of objects. It enables
you to select particles based on the current state, instead of using the particle
distribution given at initialization. By continuously resampling the particles around the
current estimate, you can get more accurate tracking and improve long-term
performance.

When you call correct, the particles used for state estimation can be resampled
depending on the ResamplingPolicy property specified in the ParticleFilter

7 Algorithm Design

7-18

object. This property is specified as a robotics.ResamplingPolicy object. The
TriggerMethod property on that object tells the particle filter which method to use for
resampling.

You can trigger resampling at either a fixed interval or when a minimum effective particle
ratio is reached. The fixed interval method resamples at a set number of iterations, which
is specified in the SamplingInterval property. The minimum effective particle ratio is a
measure of how well the current set of particles approximates the posterior distribution.
The number of effective particles is calculated by:

N

w

eff

i

i

N
=

()
=

Â

1

2

1

In this equation, N is the number of particles, and w is the normalized weight of each
particle. The effective particle ratio is then Neff / NumParticles. Therefore, the effective
particle ratio is a function of the weights of all the particles. After the weights of the
particles reach a low enough value, they are not contributing to the state estimation. This
low value triggers resampling, so the particles are closer to the current state estimation
and have higher weights.

State Estimation Method
The final step of the particle filter workflow is the selection of a single state estimate. The
particles and their weights sampled across the distribution are used to give the best
estimation of the actual state. However, you can use the particles information to get a
single state estimate in multiple ways. With the ParticleFilter object, you can either
choose the best estimate based on the particle with the highest weight or take a mean of
all the particles. Specify the estimation method in the StateEstimationMethod
property as either 'mean'(default) or 'maxweight'.

Because you can estimate the state from all of the particles in many ways, you can also
extract each particle and its weight from the robotics.ParticleFilter using the
Particles property.

See Also
robotics.ParticleFilter | robotics.ParticleFilter.correct |
robotics.ParticleFilter.initialize | robotics.ParticleFilter.predict

 See Also

7-19

Related Examples
• “Track a Car-Like Robot Using Particle Filter”
• “Estimate Robot Position in a Loop Using Particle Filter”

More About
• “Particle Filter Workflow” on page 7-21

7 Algorithm Design

7-20

Particle Filter Workflow
In this section...
“Estimation Workflow” on page 7-22
“Estimate Robot Position in a Loop Using Particle Filter” on page 7-26

A particle filter is a recursive, Bayesian state estimator that uses discrete particles to
approximate the posterior distribution of the estimated state.

The particle filter algorithm computes the state estimate recursively and involves two
steps:

• Prediction – The algorithm uses the previous state to predict the current state based
on a given system model.

• Correction – The algorithm uses the current sensor measurement to correct the state
estimate.

The algorithm also periodically redistributes, or resamples, the particles in the state
space to match the posterior distribution of the estimated state.

The estimated state consists of all the state variables. Each particle represents a discrete
state hypothesis. The set of all particles is used to help determine the final state estimate.

You can apply the particle filter to arbitrary nonlinear system models. Process and
measurement noise can follow arbitrary non-Gaussian distributions.

To use the particle filter properly, you must specify parameters such as the number of
particles, the initial particle location, and the state estimation method. Also, if you have a
specific motion and sensor model, you specify these parameters in the state transition
function and measurement likelihood function, respectively. For more information, see
“Particle Filter Parameters” on page 7-14.

Follow this basic workflow to create and use a particle filter. This page details the
estimation workflow and shows an example of how to run a particle filter in a loop to
continuously estimate state.

 Particle Filter Workflow

7-21

Estimation Workflow
When using a particle filter, there is a required set of steps to create the particle filter and
estimate state. The prediction and correction steps are the main iteration steps for
continuously estimating state.

7 Algorithm Design

7-22

 Particle Filter Workflow

7-23

Create Particle Filter

Create a ParticleFilter object by calling robotics.ParticleFilter.

Set Parameters of Nonlinear System

Modify these ParticleFilter parameters to fit for your specific system or application:

• StateTransitionFcn
• MeasurementLikelihoodFcn
• ResamplingPolicy
• ResamplingMethod
• StateEstimationMethod

Default values for these parameters are given for basic operation.

The StateTransitionFcn and MeasurementLikelihoodFcn functions define the
system behavior and measurement integration. They are vital for the particle filter to
track accurately. For more information, see “Particle Filter Parameters” on page 7-14.

Initialize Particles

Use the initialize method to set the number of particles and the initial state. See
robotics.ParticleFilter.initialize.

Sample Particles from a Distribution

You can sample the initial particle locations in two ways:

• Initial pose and covariance — If you have an idea of your initial state, it is
recommended you specify the initial pose and covariance. This specification helps to
cluster particles closer to your estimate so tracking is more effective from the start.

• State bounds — If you do not know your initial state, you can specify the possible
limits of each state variable. Particles are uniformly distributed across the state
bounds for each variable. Widely distributed particles are not as effective at tracking,
because fewer particles are near the actual state. Using state bounds usually requires
more particles, computation time, and iterations to converge to the actual state
estimate.

7 Algorithm Design

7-24

Predict

Based on a specified state transition function, particles evolve to estimate the next state.
Use predict to execute the state transition function specified in the
StateTransitionFcn property. See robotics.ParticleFilter.predict.

Get Measurement

The measurements collected from sensors are used in the next step to correct the current
predicted state.

Correct

Measurements are then used to adjust the predicted state and correct the estimate.
Specify your measurements using the correct function.
robotics.ParticleFilter.correct uses the MeasurementLikelihoodFcn to
calculate the likelihood of sensor measurements for each particle. Resampling of particles
is required to update your estimation as the state changes in subsequent iterations. This
step triggers resampling based on the ResamplingMethod and ResamplingPolicy
properties.

Extract Best State Estimation

After calling correct, the best state estimate is automatically extracted based on the
Weights of each particle and the StateEstimationMethod property specified in
robotics.ParticleFilter. The best estimated state and covariance is output by the
correct function.

Resample Particles

This step is not separately called, but is executed when you call correct. Once your
state has changed enough, resample your particles based on the newest estimate. The
correct method checks the ResamplingPolicy for the triggering of particle
resampling according to the current distribution of particles and their weights. If
resampling is not triggered, the same particles are used for the next estimation. If your
state does not vary by much or if your time step is low, you can call the predict and
correct methods without resampling.

Continuously Predict and Correct

Repeat the previous prediction and correction steps as needed for estimating state. The
correction step determines if resampling of the particles is required. Multiple calls for
predict or correct might be required when:

 Particle Filter Workflow

7-25

• No measurement is available but control inputs and time updates are occur at a high
frequency. Use the predict method to evolve the particles to get the updated
predicted state more often.

• Multiple measurement reading are available. Use correct to integrate multiple
readings from the same or multiple sensors. The function corrects the state based on
each set of information collected.

Estimate Robot Position in a Loop Using Particle Filter
Use the ParticleFilter object to track a robot as it moves in a 2-D space. The
measured position has random noise added. Using predict and correct, track the
robot based on the measurement and on an assumed motion model.

Initialize the particle filter and specify the default state transition function, the
measurement likelihood function, and the resampling policy.

pf = robotics.ParticleFilter;
pf.StateEstimationMethod = 'mean';
pf.ResamplingMethod = 'systematic';

Sample 1000 particles with an initial position of [0 0] and unit covariance.

initialize(pf,1000,[0 0],eye(2));

Prior to estimation, define a sine wave path for the dot to follow. Create an array to store
the predicted and estimated position. Define the amplitude of noise.

t = 0:0.1:4*pi;
dot = [t; sin(t)]';
robotPred = zeros(length(t),2);
robotCorrected = zeros(length(t),2);
noise = 0.1;

Begin the loop for predicting and correcting the estimated position based on
measurements. The resampling of particles occurs based on the ResamplingPolicy
property. The robot moves based on a sine wave function with random noise added to the
measurement.

for i = 1:length(t)
 % Predict next position. Resample particles if necessary.
 [robotPred(i,:),robotCov] = predict(pf);
 % Generate dot measurement with random noise. This is

7 Algorithm Design

7-26

 % equivalent to the observation step.
 measurement(i,:) = dot(i,:) + noise*(rand([1 2])-noise/2);
 % Correct position based on the given measurement to get best estimation.
 % Actual dot position is not used. Store corrected position in data array.
 [robotCorrected(i,:),robotCov] = correct(pf,measurement(i,:));
end

Plot the actual path versus the estimated position. Actual results may vary due to the
randomness of particle distributions.

plot(dot(:,1),dot(:,2),robotCorrected(:,1),robotCorrected(:,2),'or')
xlim([0 t(end)])
ylim([-1 1])
legend('Actual position','Estimated position')
grid on

 Particle Filter Workflow

7-27

The figure shows how close the estimate state matches the actual position of the robot.
Try tuning the number of particles or specifying a different initial position and covariance
to see how it affects tracking over time.

See Also
robotics.ParticleFilter | robotics.ParticleFilter.correct |
robotics.ParticleFilter.initialize | robotics.ParticleFilter.predict

Related Examples
• “Track a Car-Like Robot Using Particle Filter”

7 Algorithm Design

7-28

• “Estimate Robot Position in a Loop Using Particle Filter”

More About
• “Particle Filter Parameters” on page 7-14

 See Also

7-29

Probabilistic Roadmaps (PRM)
In this section...
“Tune the Number of Nodes” on page 7-30
“Tune the Connection Distance” on page 7-34
“Create or Update PRM” on page 7-37

A probabilistic roadmap (PRM) is a network graph of possible paths in a given map based
on free and occupied spaces. The robotics.PRM class randomly generates nodes and
creates connections between these nodes based on the PRM algorithm parameters. Nodes
are connected based on the obstacle locations specified in Map, and on the specified
ConnectionDistance. You can customize the number of nodes, NumNodes, to fit the
complexity of the map and the desire to find the most efficient path. The PRM algorithm
uses the network of connected nodes to find an obstacle-free path from a start to an end
location. To plan a path through an environment effectively, tune the NumNodes and
ConnectionDistance properties.

When creating or updating the robotics.PRM class, the node locations are randomly
generated, which can affect your final path between multiple iterations. This selection of
nodes occurs when you specify Map initially, change the parameters, or update is called.
To get consistent results with the same node placement, use rng to save the state of the
random number generation. See “Tune the Connection Distance” on page 7-34 for an
example using rng.

Tune the Number of Nodes
Use the NumNodes property on the PRM object to tune the algorithm. NumNodes specifies
the number of points, or nodes, placed on the map, which the algorithm uses to generate
a roadmap. Using the ConnectionDistance property as a threshold for distance, the
algorithm connects all points that do not have obstacles blocking the direct path between
them.

Increasing the number of nodes can increase the efficiency of the path by giving more
feasible paths. However, the increased complexity increases computation time. To get
good coverage of the map, you might need a large number of nodes. Due to the random
placement of nodes, some areas of the map may not have enough nodes to connect to the
rest of the map. In this example, you create a large and small number of nodes in a
roadmap.

7 Algorithm Design

7-30

Load a map file and create an occupancy grid.

filePath = fullfile(fileparts(which('PathPlanningExample')),'data','exampleMaps.mat');
load(filePath)
map = robotics.OccupancyGrid(simpleMap,2);

Create a simple roadmap with 50 nodes.

prmSimple = robotics.PRM(map,50);
show(prmSimple)

Create a dense roadmap with 250 nodes.

prmComplex = robotics.PRM(map,250);
show(prmComplex)

 Probabilistic Roadmaps (PRM)

7-31

The additional nodes increase the complexity but yield more options to improve the path.
Given these two maps, you can calculate a path using the PRM algorithm and see the
effects.

Calculate a simple path.

startLocation = [2 1];
endLocation = [12 10];
path = findpath(prmSimple,startLocation,endLocation);
show(prmSimple)

7 Algorithm Design

7-32

Calculate a complex path.

path = findpath(prmComplex, startLocation, endLocation);
show(prmComplex)

 Probabilistic Roadmaps (PRM)

7-33

Increasing the nodes allows for a more direct path, but adds more computation time to
finding a feasible path. Because of the random placement of points, the path is not always
more direct or efficient. Using a small number of nodes can make paths worse than
depicted and even restrict the ability to find a complete path.

Tune the Connection Distance
Use the ConnectionDistance property on the PRM object to tune the algorithm.
ConnectionDistance is an upper threshold for points that are connected in the
roadmap. Each node is connected to all nodes within this connection distance that do not
have obstacles between them. By lowering the connection distance, you can limit the
number of connections to reduce the computation time and simplify the map. However, a

7 Algorithm Design

7-34

lowered distance limits the number of available paths from which to find a complete
obstacle-free path. When working with simple maps, you can use a higher connection
distance with a small number of nodes to increase efficiency. For complex maps with lots
of obstacles, a higher number of nodes with a lowered connection distance increases the
chance of finding a solution.

Load a map file and create an occupancy grid.

filePath = fullfile(fileparts(which('PathPlanningExample')),'data','exampleMaps.mat');
load(filePath)
map = robotics.OccupancyGrid(simpleMap,2);

Create a roadmap with 100 nodes and calculate the path. The default
ConnectionDistance is set to inf. Save the random number generation settings using
the rng function. The saved settings enable you to reproduce the same points and see the
effect of changing ConnectionDistance.

rngState = rng;
prm = robotics.PRM(map,100);
startLocation = [2 1];
endLocation = [12 10];
path = findpath(prm,startLocation,endLocation);
show(prm)

 Probabilistic Roadmaps (PRM)

7-35

Reload the random number generation settings to have PRM use the same nodes. Lower
ConnectionDistance to 2 m. Show the calculated path.

rng(rngState);
prm.ConnectionDistance = 2;
path = findpath(prm,startLocation,endLocation);
show(prm)

7 Algorithm Design

7-36

Create or Update PRM
Create or update your roadmap. To create the roadmap, call prm =
robotics.PRM(map,__) or specify the Map property on the PRM object. Then, call the
update, findpath, or show method. At this point, the nodes are randomly generated
and the connections are made.

This roadmap changes only if you call update or change the properties in the PRM object.
When properties change, any method (update, findpath, or show) called on the object
triggers the roadmap points and connections to be recalculated. Because recalculating
the map can be computationally intensive, you can reuse the same roadmap by calling
findpath with different starting and ending locations.

 Probabilistic Roadmaps (PRM)

7-37

Load a map file and create an occupancy grid.

filePath = fullfile(fileparts(which('PathPlanningExample')),'data','exampleMaps.mat');
load(filePath)
map = robotics.BinaryOccupancyGrid(simpleMap,2);

Create a roadmap. Your nodes and connections might look different due to the random
placement of nodes.

prm = robotics.PRM(map,100);
show(prm)

Call update or change a parameter to update the PRM nodes and connections.

7 Algorithm Design

7-38

update(prm)
show(prm)

% The PRM algorithm recalculates the node placement and generates a new network of nodes.

References
[1] Kavraki, L.E., P. Svestka, J.-C. Latombe, and M.H. Overmars. "Probabilistic roadmaps

for path planning in high-dimensional configuration spaces," IEEE Transactions
on Robotics and Automation. Vol. 12, No. 4, Aug 1996 pp. 566—580.

 Probabilistic Roadmaps (PRM)

7-39

See Also
robotics.PRM | robotics.PRM.findpath | robotics.PRM.show |
robotics.PRM.update

7 Algorithm Design

7-40

Pure Pursuit Controller
In this section...
“Reference Coordinate System” on page 7-41
“Look Ahead Distance” on page 7-42
“Limitations” on page 7-43

PurePursuit is a path tracking algorithm. It computes the angular velocity command that
moves the robot from its current position to reach some look-ahead point in front of the
robot. The linear velocity is assumed constant, hence you can change the linear velocity
of the robot at any point. The algorithm then moves the look-ahead point on the path
based on the current position of the robot until the last point of the path. You can think of
this as the robot constantly chasing a point in front of it. The property
LookAheadDistance decides how far the look-ahead point is placed.

The PurePursuit class (robotics.PurePursuit) is not a traditional controller, but
acts as a tracking algorithm for path following purposes. In the Robotics System Toolbox,
you create a PurePursuit controller and specify a list of waypoints. The desired linear
and maximum angular velocities can be specified. These properties are determined based
on the robot’s specifications. Given the pose (position and orientation) of the robot as an
input, the object can be used to calculate the linear and angular velocities commands for
the robot. How the robot uses these commands is dependent on the system you are using,
so consider how robots can execute a motion given these commands. The final important
property is the LookAheadDistance, which tells the robot how far along on the path to
track towards. This property is explained in more detail in a section below.

Reference Coordinate System
It is important to understand the reference coordinate frame used by the PurePursuit
algorithm for its inputs and outputs. The figure below shows the reference coordinate
system. The input waypoints are [x y] coordinates, which are used to compute the robot
velocity commands. The robot’s pose is input as a pose and orientation (theta) list of
points as [x y theta]. The positive x and y directions are in the right and up directions
respectively (blue in figure). The theta value is the angular orientation of the robot
measured counterclockwise in radians from the x-axis (robot currently at 0 radians).

 Pure Pursuit Controller

7-41

Look Ahead Distance
The LookAheadDistance property is the main tuning property for the PurePursuit
controller. The look ahead distance is how far along the path the robot should look from
the current location to compute the angular velocity commands. The figure below shows
the robot and the look-ahead point. As displayed in this image, note that the actual path
does not match the direct line between waypoints.

The effect of changing this parameter can change how your robot tracks the path and
there are two major goals: regaining the path and maintaining the path. In order to
quickly regain the path between waypoints, a small LookAheadDistance will cause your
robot to move quickly towards the path. However, as can be seen in the figure below, the
robot overshoots the path and oscillates along the desired path. In order to reduce the
oscillations along the path, a larger look ahead distance can be chosen, however, it might
result in larger curvatures near the corners.

7 Algorithm Design

7-42

The LookAheadDistance property should be tuned for your application and robot
system. Different linear and angular velocities will affect this response as well and should
be considered for the path following controller.

Limitations
There are a few limitations to note about this PurePursuit algorithm:

• As shown above, the controller cannot exactly follow direct paths between waypoints.
Parameters must be tuned to optimize the performance and to converge to the path
over time.

• This PurePursuit algorithm does not stabilize the robot at a point. In your
application, a distance threshold for a goal location should be applied to stop the robot
near the desired goal. This can be seen in the path following example: “Path Following
for a Differential Drive Robot”.

References
[1] Coulter, R. Implementation of the Pure Pursuit Path Tracking Algorithm. Carnegie

Mellon University, Pittsburgh, Pennsylvania, Jan 1990.

See Also
robotics.PRM | robotics.PurePursuit | robotics.VectorFieldHistogram

Related Examples
• “Path Following for a Differential Drive Robot”

 See Also

7-43

Vector Field Histogram
In this section...
“Robot Dimensions” on page 7-44
“Cost Function Weights” on page 7-46
“Histogram Properties” on page 7-47
“Tune Parameters Using show” on page 7-51

The vector field histogram (VFH) algorithm computes obstacle-free steering directions for
a robot based on range sensor readings. Range sensor readings are used to compute
polar density histograms to identify obstacle location and proximity. Based on the
specified parameters and thresholds, these histograms are converted to binary
histograms to indicate valid steering directions for the robot. The VFH algorithm factors
in robot size and turning radius to output a steering direction for the robot to avoid
obstacles and follow a target direction.

Robot Dimensions
To calculate steering directions, you must specify information about the robot size and its
driving capabilities. The VFH algorithm requires only four input parameters for the robot.
These parameters are properties of the robotics.VectorFieldHistogram class:
RobotRadius, SafetyDistance, MinTurningRadius, and DistanceLimits.

• RobotRadius specifies the radius of the smallest circle that can encircle all parts of
the robot. This radius ensures that the robot avoids obstacles based on its size.

7 Algorithm Design

7-44

• SafetyDistance optionally specifies an added distance on top of the RobotRadius.
You can use this property to add a factor of safety when navigating an environment.

• MinTurningRadius specifies the minimum turning radius for the robot traveling at
the desired velocity. The robot may not be able to make sharp turns at high velocities.
This property factors in navigating around obstacles and gives it enough space to
maneuver.

• DistanceLimits specifies the distance range that you want to consider for obstacle
avoidance. You specify the limits in a two-element vector, [lower upper]. The lower

 Vector Field Histogram

7-45

limit is used to ignore sensor readings that intersect with parts on the robot, sensor
inaccuracies at short distances, or sensor noise. The upper limit is the effective range
of the sensor or is based on your application. You might not want to consider all
obstacles in the full sensor range.

Note All information about the range sensor readings assumes that your range finder is
mounted in the center of your robot. If the range sensor is mounted elsewhere, transform
your range sensor readings from the laser coordinate frame to the robot base frame. See
“Transform Laser Scan Data From A ROS Network” on page 9-2 for an example.

Cost Function Weights
Cost function weights are used to calculate the final steering directions. The VFH
algorithm considers multiple steering directions based on your current, previous, and
target directions. By setting the CurrentDirectionWeight,
PreviousDirectionWeight, and TargetDirectionWeight properties, you can
modify the steering behavior of your robot. Changing these weights affects the
responsiveness of the robot and how it reacts to obstacles. To make the robot head
towards its goal location, set TargetDirectionWeight higher than the sum of the other
weights. This high TargetDirectionWeight value helps to ensure the computed
steering direction is close to the target direction. Depending on your application, you
might need to tune these weights.

7 Algorithm Design

7-46

Histogram Properties
The VFH algorithm calculates a histogram based on the given range sensor data. It takes
all directions around the robot and converts them to angular sectors that are specified by
the NumAngularSectors property. This property is non-tunable and remains fixed once
the robotics.VectorFieldHistogram object is called. The range sensor data is used
to calculate a polar density histogram over these angular sectors.

 Vector Field Histogram

7-47

7 Algorithm Design

7-48

Note Using a small NumAngularSectors value can cause the VFH algorithm to miss
smaller obstacles. Missed obstacles do not appear on the histogram.

This histogram displays the angular sectors in blue and the histogram thresholds in pink.
The HistogramThresholds property is a two-element vector that determines the values
of the masked histogram, specified as [lower upper]. Polar obstacle density values
higher than the upper threshold are represented as occupied space (1) in the masked
histogram. Values smaller than the lower threshold are represented as free space (0).
Values that fall between the limits are set to the values in the previous binary histogram,
with the default being free space (0). The masked histogram also factors in the
MinTurningRadius, RobotSize, and SafetyDistance.

The polar density plot has the following corresponding masked histogram plot. This plot
shows the target and steering directions, range readings, and distance limits.

 Vector Field Histogram

7-49

7 Algorithm Design

7-50

Tune Parameters Using show
When working with a robotics.VectorFieldHistogram object, you can visualize the
properties and parameters of the algorithm using the
robotics.VectorFieldHistogram.show method. This method displays the polar
density plot and masked binary histogram. It also displays the algorithm parameters and
the output steering direction for the VFH.

You can then tune parameters to help you prototype your obstacle avoidance application.
For example, if you see that certain obstacles do not appear in the Masked Polar
Histogram plot (right), then in the Polar Obstacle Density plot, consider adjusting the
histogram thresholds to appropriate values. After you make the adjustments in the
Masked Polar Histogram plot, the range sensor readings, shown in red, should match
up with locations in the masked histogram (blue). Also, you can see the target and
steering directions. You specify the target direction. The steering direction is the main
output from the VFH algorithm. Adjusting the “Cost Function Weights” on page 7-46 can
help you tune the output of the final steering direction.

Although you can use the show method in a loop, it slows computation speed due to the
graphical plotting. If you are running this algorithm for real-time applications, get and
display the VFH data in separate operations.

See Also
robotics.VectorFieldHistogram | robotics.VectorFieldHistogram.show

 See Also

7-51

Monte Carlo Localization Algorithm
In this section...
“Overview” on page 7-52
“State Representation” on page 7-53
“Initialization of Particles” on page 7-55
“Resampling Particles and Updating Pose” on page 7-57
“Motion and Sensor Model” on page 7-58

Overview
The Monte Carlo Localization (MCL) algorithm is used to estimate the position and
orientation of a robot. The algorithm uses a known map of the environment, range sensor
data, and odometry sensor data. To see how to construct an object and use this algorithm,
see robotics.MonteCarloLocalization.

To localize the robot, the MCL algorithm uses a particle filter to estimate its position. The
particles represent the distribution of the likely states for the robot. Each particle
represents a possible robot state. The particles converge around a single location as the
robot moves in the environment and senses different parts of the environment using a
range sensor. The robot motion is sensed using an odometry sensor.

The particles are updated in this process:

1 Particles are propagated based on the change in the pose and the specified motion
model, MotionModel.

2 The particles are assigned weights based on the likelihood of receiving the range
sensor reading for each particle. This reading is based on the sensor model you
specify in SensorModel.

3 Based on these weights, a robot state estimate is extracted based on the particle
weights. The group of particles with the highest weight is used to estimate the
position of the robot.

4 Finally, the particles are resampled based on the specified ResamplingInterval.
Resampling adjusts particle positions and improves performance by adjusting the
number of particles used. It is a key feature for adjusting to changes and keeping
particles relevant for estimating the robot state.

7 Algorithm Design

7-52

The algorithm outputs the estimated pose and covariance. These estimates are the mean
and covariance of the highest weighted cluster of particles. For continuous tracking,
repeat these steps in a loop to propagate particles, evaluate their likelihood, and get the
best state estimate.

For more information on particle filters as a general application, see “Particle Filter
Workflow” on page 7-21.

State Representation
When working with a localization algorithm, the goal is to estimate the state of your
system. For robotics applications, this estimated state is usually a robot pose. For the
MonteCarloLocalization object, you specify this pose as a three-element vector. The
pose corresponds to an x-y position, [x y], and an angular orientation, theta.

 Monte Carlo Localization Algorithm

7-53

The MCL algorithm estimates these three values based on sensor inputs of the
environment and a given motion model of your system. The output from using the
MonteCarloLocalization object includes the pose, which is the best estimated state
of the [x y theta] values. Particles are distributed around an initial pose,
InitialPose, or sampled uniformly using global localization. The pose is computed as
the mean of the highest weighted cluster of particles once these particles have been
corrected based on measurements.

This plot shows the highest weighted cluster and the final robot pose displayed over the
samples particles in green. With more iterations of the MCL algorithm and measurement
corrections, the particles converge to the true location of the robot. However, it is
possible that particle clusters can have high weights for false estimates and converge on
the wrong location. If the wrong convergence occurs, resample the particles by resetting
the MCL algorithm with an updated InitialPose.

7 Algorithm Design

7-54

Initialization of Particles
When you first create the MonteCarloLocalization algorithm, specify the minimum
and maximum particle limits by using the ParticleLimits property. A higher number of
particles increases the likelihood that the particles converge on the actual location.
However, a lower particle number is faster. The number of particles adjusts dynamically
within the limits based on the weights of particle clusters. This adjustment helps to
reduce the number of particles over time so localization can run more efficiently.

Particle Distribution

Particles must be sampled across a specified distribution. To initialize particles in the
state space, you can use either an initial pose or global localization. With global
localization, you can uniformly distribute particles across your expected state space
(pulled from the Map property of yourSensorModel object). In the default MCL object,
set the GlobalLocalization property to true.

mcl = robotics.MonteCarloLocalization;
mcl.GlobalLocalization = true;

 Monte Carlo Localization Algorithm

7-55

Global localization requires a larger number of particles to effectively sample particles
across the state space. More particles increase the likelihood of successful convergence
on the actual state. This large distribution greatly reduces initial performance until
particles begin to converge and particle number can be reduced.

By default, global localization is set to false. Without global localization, you must
specify the InitialPose and InitialCovariance properties, which helps to localize
the particles. Using this initial pose, particles are more closely grouped around an
estimated state. A close grouping of particles enables you to use fewer of them, and
increases the speed and accuracy of tracking during the first iterations.

7 Algorithm Design

7-56

These images were taken from the “Localize TurtleBot Using Monte Carlo Localization”
example, which shows how to use the MCL algorithm with the TurtleBot® in a known
environment.

Resampling Particles and Updating Pose
To localize your robot continuously, you must resample the particles and update the
algorithm. Use the UpdateThreshold and ResamplingInterval properties to control
when resampling and updates to the estimated state occur.

The UpdateThreshold is a three-element vector that defines the minimum change in the
robot pose, [x y theta], to trigger an update. Changing a variable by more than this
minimum triggers an update, causing the object to return a new state estimate. This
change in robot pose is based on the odometry, which is specified in the functional form of

 Monte Carlo Localization Algorithm

7-57

the object. Tune these thresholds based on your sensor properties and the motion of your
robot. Random noise or minor variations greater than your threshold can trigger an
unnecessary update and affect your performance. The ResamplingInterval property
defines the number of updates to trigger particle resampling. For example, a resampling
interval of 2 resamples at every other update.

The benefit of resampling particles is that you update the possible locations that
contribute to the final estimate. Resampling redistributes the particles based on their
weights and evolves particles based on the “Motion Model” on page 7-60. In this
process, the particles with lower weight are eliminated, helping the particles converge to
the true state of the robot. The number of particles dynamically changes to improve speed
or tracking.

The performance of the algorithm depends on proper resampling. If particles are widely
dispersed and the initial pose of the robot is not known, the algorithm maintains a high
particle count. As the algorithm converges on the true location, it reduces the number of
particles and increases the speed of performance. You can tune your ParticleLimits
property to limit the minimum and maximum particles used to help with the performance.

Motion and Sensor Model
The motion and sensor models for the MCL algorithm are similar to the
StateTransitionFcn and MeasurementLikelihoodFcn functions for the
robotics.ParticleFilter object, which are described in “Particle Filter Parameters”
on page 7-14. For the MCL algorithm, these models are more specific to robot
localization. After calling the object, to change the MotionModel or SensorModel
properties, you must first call release on your object.

Sensor Model

By default, the MonteCarloLocalization uses a
robotics.LikelihoodFieldSensorModel object as the sensor model. This sensor
model contains parameters specific to the range sensor used, 2-D map information for the
robot environment, and measurement noise characteristics. The sensor model uses the
parameters with range measurements to compute the likelihood of the measurements
given the current position of the robot. Without factoring in these parameters, some
measurement errors can skew the state estimate or increase weight on irrelevant
particles.

The range sensor properties are:

7 Algorithm Design

7-58

• SensorPose – The pose of the range sensor relative to the robot location. This pose is
used to transform the range readings into the robot coordinate frame.

• SensorLimits – The minimum and maximum range limits. Measurement outside of
these ranges are not factored into the likelihood calculation.

• NumBeams – Number of beams used to calculate likelihood. You can improve
performance speed by reducing the number of beams used.

Range measurements are also known to give false readings due to system noise or other
environmental interference. To account for the sensor error, specify these parameters:

• MeasurementNoise – Standard deviation for measurement noise. This deviation
applies to the range reading and accounts for any interference with the sensor. Set
this value based on information from your range sensor.

• RandomMeasurementWeight — Weight for probability of random measurement. Set a
low probability for random measurements. The default is 0.05.

• ExpectedMeasurementWeight — Weight for probability of expected measurement.
Set a high probability for expected measurements. The default is 0.95.

The sensor model also stores a map of the robot environment as an occupancy grid. Use
robotics.BinaryOccupancyGrid to specify your map with occupied and free spaces.
Set any unknown spaces in the map as free locations. Setting them to free locations
prevents the algorithm from matching detected objects to these areas of the map.

 Monte Carlo Localization Algorithm

7-59

Also, you can specify MaximumLikelihoodDistance, which limits the area for
searching for obstacles. The value of MaximumLikelihoodDistance is the maximum
distance to the nearest obstacle that is used for likelihood computation.

Motion Model

The motion model for robot localization helps to predict how particles evolve throughout
time when resampling. It is a representation of robot kinematics. The motion model
included by default with the MCL algorithm is an odometry-based differential drive
motion model (robotics.OdometryMotionModel). Without a motion model, predicting
the next step is more difficult. It is important to know the capabilities of your system so
that the localization algorithm can plan particle distributions to get better state
estimates. Be sure to consider errors from the wheel encoders or other sensors used to
measure the odometry. The errors in the system define the spread of the particle
distribution.

You can specify the error expected based on the motion of your robot as a four-element
vector, Noise. These four elements are specified as weights on the standard deviations
for [1]:

• Rotational error due to rotational motion
• Rotational error due to translational motion
• Translational error due to translational motion
• Translational error due to rotational motion

For differential drive robots, when a robot moves from a starting pose to a final pose, the
change in pose can be treated as:

1 Rotation to the final position
2 Translation in a direct line to the final position
3 Rotation to the goal orientation

Assuming these steps, you can visualize the effect of errors in rotation and translation.
Errors in the initial rotation result in your possible positions being spread out in a C-
shape around the final position.

7 Algorithm Design

7-60

Large translational errors result in your possible positions being spread out around the
direct line to the final position.

Large errors in both translation and rotation can result in wider-spread positions.

 Monte Carlo Localization Algorithm

7-61

Also, rotational errors affect the orientation of the final pose. Understanding these effects
helps you to define the Gaussian noise in the Noise property of the MotionModel object
for your specific application. As the images show, each parameter does not directly
control the dispersion and can vary with your robot configuration and geometry. Also,
multiple pose changes as the robot navigates through your environment can increase the
effects of these errors over many different steps. By accurately defining these
parameters, particles are distributed appropriately to give the MCL algorithm enough
hypotheses to find the best estimate for the robot location.

References
[1] Thrun, Sebastian, and Dieter Fox. Probabilistic Robotics. 3rd ed. Cambridge, Mass:

MIT Press, 2006. p.136.

See Also
robotics.LikelihoodFieldSensorModel | robotics.MonteCarloLocalization |
robotics.OdometryMotionModel

Related Examples
• “Localize TurtleBot Using Monte Carlo Localization”

7 Algorithm Design

7-62

Compose a Series of Laser Scans with Pose Changes
Use the matchScans function to compute the pose difference between a series of laser
scans. Compose the relative poses by using a defined composePoses function to get a
transformation to the initial frame. Then, transform all laser scans into the initial frame
using these composed poses.

Specify the original laser scan and offsets to generate a series of shifted laser scans.
Iterate through the scans and transform the original scan based on each offset. Plot the
laser scans to see the shifted data.

ranges = zeros(300,4);
angles = zeros(300,4);
ranges(:,1) = 5*ones(300,1);
ranges(11:30,1) = 4*ones(1,20);
ranges(101:200,1) = 3*ones(1,100);
angles(:,1) = linspace(-pi/2,pi/2,300);
offset(1,:) = [0.1 0.1 0];
offset(2,:) = [0.4 0.1 0.1];
offset(3,:) = [-0.2 0 -0.1];

for i = 2:4
 [ranges(:,i),angles(:,i)] = transformScan(ranges(:,i-1),angles(:,i-1),offset(i-1,:));
end

[x,y] = pol2cart(angles,ranges);
plot(x,y)
axis equal

 Compose a Series of Laser Scans with Pose Changes

7-63

Perform scan matching on each laser scan set to get the relative pose between each scan.
The outputs from the matchScans function are close to the specified offsets. The initial
scan is in the initial frame, so the pose difference is [0 0 0].

relPoses(1,:) = [0 0 0];

for i = 2:4
 relPoses(i,:) = matchScans(ranges(:,i),angles(:,i),ranges(:,i-1),angles(:,i-1),...
 'SolverAlgorithm','fminunc','CellSize',1);
end

Use the composePoses function in a loop to get the absolute transformation for each
laser scan. This function is defined at the end of the example. Transform each scan to get
them all in the initial frame.

7 Algorithm Design

7-64

transRanges = zeros(300,4);
transAngles = zeros(300,4);
transRanges(:,1) = ranges(:,1);
transAngles(:,1) = angles(:,1);
composedPoses(1,:) = [0 0 0];
for i = 2:4
 composedPoses(i,:) = composePoses(relPoses(i,:),composedPoses(i-1,:));
 [transRanges(:,i),transAngles(:,i)] = transformScan(ranges(:,i),angles(:,i),composedPoses(i,:));
end

Plot the transformed ranges and angles. They overlap well, based on the calculated
transformations from matchScans.

[x,y] = pol2cart(transAngles,transRanges);
plot(x,y)
axis equal

 Compose a Series of Laser Scans with Pose Changes

7-65

Define the composePoses function. This function takes in the transformation of the
initial frame to the base frame and the relative transformation from the initial frame to a
second frame. For a series of laser scans, the relative input is the relative pose
between the last two frames, and the base input is the composed pose over all previous
scans.

You can also define this function in a separate script and save to the current folder.

function composedPose = composePoses(relative,base)
 %Convert both poses (3-by-1 vector) to transformations (4-by-4 matrix) and multiply
 %together using pose2tform function.
 tform = pose2tform(base)*pose2tform(relative);

 % Extract translational vector and Euler angles as ZYX.

7 Algorithm Design

7-66

 trvec = tform2trvec(tform);
 eul = tform2eul(tform);

 % Concatenate the elements of the transform as [x y theta].
 composedPose = [trvec(1:2) eul(1)];

 % Function to convert pose to transform.
 function tform = pose2tform(pose)
 x = pose(1);
 y = pose(2);
 th = wrapTo2Pi(pose(3));
 tform = trvec2tform([x y 0])*eul2tform([th 0 0]);
 end
end

See Also
matchScans | transformScan

 See Also

7-67

Rigid Body Tree Robot Model
In this section...
“Rigid Body Tree Components” on page 7-68
“Robot Configurations” on page 7-71

The rigid body tree model is a representation of a robot structure. You can use it to
represent robots such as manipulators or other kinematic trees. Use the RigidBodyTree
class to create these models.

A rigid body tree is made up of rigid bodies (RigidBody) that are attached via joints
(Joint). Each rigid body has a joint that defines how that body moves relative to its
parent in the tree. Specify the transformation from one body to the next by setting the
fixed transformation on each joint (setFixedTransform).

You can add, replace, or remove bodies from the rigid body tree model. You can also
replace joints for specific bodies. The RigidBodyTree object maintains the relationships
and updates the RigidBody object properties to reflect this relationship. You can also get
transformations between different body frames using getTransform.

Rigid Body Tree Components
Base

Every rigid body tree has a base. The base defines the world coordinate frame and is the
first attachment point for a rigid body. The base cannot be modified, except for the Name
property. You can do so by modifying the BaseName property of the rigid body tree.

Rigid Body

The rigid body is the basic building block of rigid body tree model and is created using
RigidBody. A rigid body, sometimes called a link, represents a solid body that cannot
deform. The distance between any two points on a single rigid body remains constant.

7 Algorithm Design

7-68

When added to a rigid body tree with multiple bodies, rigid bodies have parent or
children bodies associated with them (Parent or Children properties). The parent is the
body that this rigid body is attached to, which can be the robot base. The children are all
the bodies attached to this body downstream from the base of the rigid body tree.

Each rigid body has a coordinate frame associated with them, and contains a Joint
object.

Joint

Each rigid body has one joint, which defines the motion of that rigid body relative to its
parent. It is the attachment point that connects two rigid bodies in a robot model. To
represent a single physical body with multiple joints or different axes of motion, use
multiple RigidBody objects.

The Joint class supports fixed, revolute, and prismatic joints.

 Rigid Body Tree Robot Model

7-69

These joints allow the following motion, depending on their type:

• 'fixed' — No motion. Body is rigidly connected to its parent.
• 'revolute' — Rotational motion only. Body rotates around this joint relative to its

parent. Position limits define the minimum and maximum angular position in radians
around the axis of motion.

• 'prismatic' — Translational motion only. The body moves linearly relative to its
parent along the axis of motion.

Each joint has an axis of motion defined by the JointAxis property. The joint axis is a 3-
D unit vector that either defines the axis of rotation (revolute joints) or axis of translation
(prismatic joints). The HomePosition property defines the home position for that specific
joint, which is a point within the position limits. Use homeConfiguration to return the
home configuration for the robot, which is a collection of all the joints home positions in
the model.

Joints also have properties that define the fixed transformation between parent and
children body coordinate frames. These properties can only be set using
thesetFixedTransform method. Depending on your method of inputting transformation
parameters, either the JointToParentTransform or ChildToJointTransform
property is set using this method. The other property is set to the identity matrix. The
following images depict what each property signifies.

7 Algorithm Design

7-70

• The JointToParentTransform defines where the joint of the child body is in
relationship to the parent body frame. When JointToParentTransform is an
identity matrix, the parent body and joint frames coincide.

• The ChildToJointTransform defines where the joint of the child body is in
relationship to the child body frame. When ChildToJointTransform is an identity
matrix, the child body and joint frames coincide.

Note The actual joint positions are not part of this Joint object. The robot model is
stateless. There is an intermediate transformation between the parent and child joint
frames that defines the position of the joint along the axis of motion. This transformation
is defined in the robot configuration. See “Robot Configurations” on page 7-71.

Robot Configurations
After fully assembling your robot and defining transformations between different bodies,
you can create robot configurations. A configuration defines all the joint positions of the
robot by their joint names.

Use homeConfiguration to get the HomePosition property of each joint and create
the home configuration.

Robot configurations are given as an array of structures.

config = homeConfiguration(robot)

config =

 1×6 struct array with fields:

 JointName
 JointPosition

Each element in the array is a structure that contains the name and position of one of the
robot joints.

config(1)

 Rigid Body Tree Robot Model

7-71

ans =

 struct with fields:

 JointName: 'jnt1'
 JointPosition: 0

You can also generate a random configuration that obeys all the joint limits using
randomConfiguration.

7 Algorithm Design

7-72

Use robot configurations when you want to plot a robot in a figure using show. Also, you
can get the transformation between two body frames with a specific configuration using
getTransform.

To get the robot configuration with a specified end-effector pose, use
InverseKinematics. This algorithm solves for the required joint angles to achieve a
specific pose for a specified rigid body.

See Also
robotics.InverseKinematics | robotics.RigidBodyTree

Related Examples
• “Build a Robot Step by Step” on page 7-74
• “Inverse Kinematics Algorithms” on page 7-79

 See Also

7-73

Build a Robot Step by Step
This example goes through the process of building a robot step by step, showing you the
different robot components and how functions are called to build it. Code sections are
shown, but actual values for dimensions and transformations depend on your robot.

1 Create a rigid body object.

body1 = robotics.RigidBody('body1');

2 Create a joint and assign it to the rigid body. Define the home position property of the
joint, HomePosition. Set the joint-to-parent transform using a homogeneous
transformation, tform. Use the trvec2tform function to convert from a translation
vector to a homogenous transformation.ChildToJointTransform is set to an
identity matrix. For information on homogenous transformations and other
coordinate transformations, see “Coordinate System Transformations”.

jnt1 = robotics.Joint('jnt1','revolute');
jnt1.HomePosition = pi/4;
tform = trvec2tform([0.25, 0.25, 0]); % User defined
setFixedTransform(jnt1,tform);
body1.Joint = jnt1;

3 Create a rigid body tree. This tree is initialized with a base coordinate frame to
attach bodies to.

robot = robotics.RigidBodyTree;

7 Algorithm Design

7-74

4 Add the first body to the tree. Specify that you are attaching it to the base of the tree.
The fixed transform defined previously is from the base (parent) to the first body.

addBody(robot,body1,'base')

5 Create a second body. Define properties of this body and attach it to the first rigid
body. Define the transformation relative to the previous body frame.

body2 = robotics.RigidBody('body2');
jnt2 = robotics.Joint('jnt2','revolute');
jnt2.HomePosition = pi/6; % User defined
tform2 = trvec2tform([1, 0, 0]); % User defined
setFixedTransform(jnt2,tform2);
body2.Joint = jnt2;
addBody(robot,body2,'body1'); % Add body2 to body1

6 Add other bodies. Attach body 3 and 4 to body 2.

body3 = robotics.RigidBody('body3');
body4 = robotics.RigidBody('body4');
jnt3 = robotics.Joint('jnt3','revolute');
jnt4 = robotics.Joint('jnt4','revolute');
tform3 = trvec2tform([0.6, -0.1, 0])*eul2tform([-pi/2, 0, 0]); % User defined
tform4 = trvec2tform([1, 0, 0]); % User defined
setFixedTransform(jnt3,tform3);
setFixedTransform(jnt4,tform4);
jnt3.HomePosition = pi/4; % User defined
body3.Joint = jnt3
body4.Joint = jnt4

 Build a Robot Step by Step

7-75

addBody(robot,body3,'body2'); % Add body3 to body2
addBody(robot,body4,'body2'); % Add body4 to body2

7 If you have a specific end effector that you care about for control, define it as a rigid
body with a fixed joint. For this robot, add an end effector to body4 so that you can
get transformations for it.

bodyEndEffector = robotics.RigidBody('endeffector');
tform5 = trvec2tform([0.5, 0, 0]); % User defined
setFixedTransform(bodyEndEffector.Joint,tform5);
addBody(robot,bodyEndEffector,'body4');

8 Now that you have created your robot, you can generate robot configurations. With a
given configuration, you can also get a transformation between two body frames
using robotics.RigidBodyTree.getTransform. Get a transformation from the
end effector to the base.

config = robot.randomConfiguration
tform = getTransform(robot,config,'endeffector','base')

config =

 1×2 struct array with fields:

 JointName
 JointPosition

tform =

 -0.5484 0.8362 0 0
 -0.8362 -0.5484 0 0
 0 0 1.0000 0
 0 0 0 1.0000

7 Algorithm Design

7-76

Note This transform is specific to the dimensions specified in this example. Values
for your robot vary depending on the transformations you define.

9 You can create a subtree from your existing robot or other robot models by using
robotics.RigidBodyTree.subtree. Specify the body name to use as the base for
the new subtree. You can modify this subtree by adding, changing, or removing
bodies.

newArm = subtree(robot,'body2');
removeBody(newArm,'body3');
removeBody(newArm,'endeffector')

10 You can also add these subtrees to the robot. Adding a subtree is similar to adding a
body. The specified body name acts as a base for attachment, and all transformations
on the subtree are relative to that body frame. Before you add the subtree, you must
ensure all the names of bodies and joints are unique. Create copies of the bodies and
joints, rename them, and replace them on the subtree. Call
robotics.RigidBodyTree.addSubtree to attach the subtree to a specified body.

newBody1 = copy(getBody(newArm,'body2'));
newBody2 = copy(getBody(newArm,'body4'));
newBody1.Name = 'newBody1';
newBody2.Name = 'newBody2';
newBody1.Joint = robotics.Joint('newJnt1','revolute');
newBody2.Joint = robotics.Joint('newJnt2','revolute');
tformTree = trvec2tform([0.2, 0, 0]); % User defined
setFixedTransform(newBody1,tformTree);
replaceBody(newArm,'body2',newBody1);
replaceBody(newArm,'body4',newBody2);

addSubtree(robot,'body1',newArm);

11 Finally, you can use showdetails to look at the robot you built. Verify that the joint
types are correct.

 Build a Robot Step by Step

7-77

showdetails(robot)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 body1 jnt1 revolute base(0) body2(2) newBody1(6)
 2 body2 jnt2 revolute body1(1) body3(3) body4(4)
 3 body3 jnt3 revolute body2(2)
 4 body4 jnt4 revolute body2(2) endeffector(5)
 5 endeffector endeffector_jnt fixed body4(4)
 6 newBody1 newJnt1 revolute body1(1) newBody2(7)
 7 newBody2 newJnt2 revolute newBody1(6)

See Also
robotics.InverseKinematics | robotics.RigidBodyTree

Related Examples
• “Rigid Body Tree Robot Model” on page 7-68

7 Algorithm Design

7-78

Inverse Kinematics Algorithms
In this section...
“Choose an Algorithm” on page 7-79
“Solver Parameters” on page 7-80
“Solution Information” on page 7-81
“References” on page 7-82

The robotics.InverseKinematics and
robotics.GeneralizedInverseKinematics classes give you access to inverse
kinematics (IK) algorithms. You can use these algorithms to generate a robot
configuration that achieves specified goals and constraints for the robot. This robot
configuration is a list of joint positions that are within the position limits of the robot
model and do not violate any constraints the robot has.

Choose an Algorithm
MATLAB supports two algorithms for achieving an IK solution: the BFGS projection
algorithm and the Levenberg-Marquardt algorithm. Both algorithms are iterative,
gradient-based optimization methods that start from an initial guess at the solution and
seek to minimize a specific cost function. If either algorithm converges to a configuration
where the cost is close to zero within a specified tolerance, it has found a solution to the
inverse kinematics problem. However, for some combinations of initial guesses and
desired end effector poses, the algorithm may exit without finding an ideal robot
configuration. To handle this, the algorithm utilizes a random restart mechanism. If
enabled, the random restart mechanism restarts the iterative search from a random robot
configuration whenever that search fails to find a configuration that achieves the desired
end effector pose. These random restarts continue until either a qualifying IK solution is
found, the maximum time has elapsed, or the iteration limit is reached.

To set your algorithm, specify the SolverAlgorithm property as either
'BFGSGradientProjection' or 'LevenbergMarquardt'.

BFGS Gradient Projection

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) gradient projection algorithm is a quasi-
Newton method that uses the gradients of the cost function from past iterations to
generate approximate second-derivative information. The algorithm uses this second-

 Inverse Kinematics Algorithms

7-79

derivative information in determining the step to take in the current iteration. A gradient
projection method is used to deal with boundary limits on the cost function that the joint
limits of the robot model create. The direction calculated is modified so that the search
direction is always valid.

This method is the default algorithm and is more robust at finding solutions than the
Levenberg-Marquardt method. It is more effective for configurations near joint limits or
when the initial guess is not close to the solution. If your initial guess is close to the
solution and a quicker solution is needed, consider the “Levenberg-Marquardt” on page 7-
80 method.

Levenberg-Marquardt

The Levenberg-Marquardt (LM) algorithm variant used in the InverseKinematics class
is an error-damped least-squares method. The error-damped factor helps to prevent the
algorithm from escaping a local minimum. The LM algorithm is optimized to converge
much faster if the initial guess is close to the solution. However the algorithm does not
handle arbitrary initial guesses well. Consider using this algorithm for finding IK solutions
for a series of poses along a desired trajectory of the end effector. Once a robot
configuration is found for one pose, that configuration is often a good initial guess at an
IK solution for the next pose in the trajectory. In this situation, the LM algorithm may
yield faster results. Otherwise, use the “BFGS Gradient Projection” on page 7-79 instead.

Solver Parameters
Each algorithm has specific tunable parameters to improve solutions. These parameters
are specified in the SolverParameters property of the object.

BFGS Gradient Projection

The solver parameters for the BFGS algorithm have the following fields:

• MaxIterations — Maximum number of iterations allowed. The default is 1500.
• MaxTime — Maximum number of seconds that the algorithm runs before timing out.

The default is 10.
• GradientTolerance — Threshold on the gradient of the cost function. The algorithm

stops if the magnitude of the gradient falls below this threshold. Must be a positive
scalar.

• SolutionTolerance — Threshold on the magnitude of the error between the end-
effector pose generated from the solution and the desired pose. The weights specified

7 Algorithm Design

7-80

for each component of the pose in the object are included in this calculation. Must be
a positive scalar.

• EnforceJointLimits — Indicator if joint limits are considered in calculating the
solution. JointLimits is a property of the robot model in
robotics.RigidBodyTree. By default, joint limits are enforced.

• AllowRandomRestarts — Indicator if random restarts are allowed. Random restarts
are triggered when the algorithm approaches a solution that does not satisfy the
constraints. A randomly generated initial guess is used. MaxIteration and MaxTime
are still obeyed. By default, random restarts are enabled.

• StepTolerance — Minimum step size allowed by the solver. Smaller step sizes
usually mean that the solution is close to convergence. The default is 10–14.

Levenberg-Marquardt

The solver parameters for the LM algorithm have the following extra fields in addition to
what the “BFGS Gradient Projection” on page 7-80 method requires:

• ErrorChangeTolerance — Threshold on the change in end-effector pose error
between iterations. The algorithm returns if the changes in all elements of the pose
error are smaller than this threshold. Must be a positive scalar.

• DampingBias — A constant term for damping. The LM algorithm has a damping
feature controlled by this constant that works with the cost function to control the rate
of convergence. To disable damping, use the UseErrorDamping parameter.

• UseErrorDamping — 1 (default), Indicator of whether damping is used. Set this
parameter to false to disable dampening.

Solution Information
While using the inverse kinematics algorithms, each call on the object returns solution
information about how the algorithm performed. The solution information is provided as a
structure with the following fields:

• Iterations — Number of iterations run by the algorithm.
• NumRandomRestarts — Number of random restarts because algorithm got stuck in a

local minimum.
• PoseErrorNorm — The magnitude of the pose error for the solution compared to the

desired end effector pose.

 Inverse Kinematics Algorithms

7-81

• ExitFlag — Code that gives more details on the algorithm execution and what
caused it to return. For the exit flags of each algorithm type, see “Exit Flags” on page
7-82.

• Status — Character vector describing whether the solution is within the tolerance
('success') or the best possible solution the algorithm could find ('best
available').

Exit Flags

In the solution information, the exit flags give more details on the execution of the
specific algorithm. Look at the Status property of the object to find out if the algorithm
was successful. Each exit flag code has a defined description.

'BFGSGradientProjection' algorithm exit flags:

• 1 — Local minimum found.
• 2 — Maximum number of iterations reached.
• 3 — Algorithm timed out during operation.
• 4 — Minimum step size. The step size is below the StepToleranceSize field of the

SolverParameters property.
• 5 — No exit flag. Relevant to 'LevenbergMarquardt' algorithm only.
• 6 — Search direction invalid.
• 7 — Hessian is not positive semidefinite.

'LevenbergMarquardt' algorithm exit flags:

• 1 — Local minimum found.
• 2 — Maximum number of iterations reached.
• 3 — Algorithm timed out during operation.
• 4 — Minimum step size. The step size is below the StepToleranceSize field of the

SolverParameters property.
• 5 — The change in end-effector pose error is below the ErrorChangeTolerance field

of the SolverParameters property.

References
[1] Badreddine, Hassan, Stefan Vandewalle, and Johan Meyers. "Sequential Quadratic

Programming (SQP) for Optimal Control in Direct Numerical Simulation of

7 Algorithm Design

7-82

Turbulent Flow." Journal of Computational Physics. 256 (2014): 1–16. doi:10.1016/
j.jcp.2013.08.044.

[2] Bertsekas, Dimitri P. Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.

[3] Goldfarb, Donald. "Extension of Davidon’s Variable Metric Method to Maximization
Under Linear Inequality and Equality Constraints." SIAM Journal on Applied
Mathematics. Vol. 17, No. 4 (1969): 739–64. doi:10.1137/0117067.

[4] Nocedal, Jorge, and Stephen Wright. Numerical Optimization. New York, NY: Springer,
2006.

[5] Sugihara, Tomomichi. "Solvability-Unconcerned Inverse Kinematics by the Levenberg–
Marquardt Method." IEEE Transactions on Robotics Vol. 27, No. 5 (2011): 984–91.
doi:10.1109/tro.2011.2148230.

[6] Zhao, Jianmin, and Norman I. Badler. "Inverse Kinematics Positioning Using Nonlinear
Programming for Highly Articulated Figures." ACM Transactions on Graphics Vol.
13, No. 4 (1994): 313–36. doi:10.1145/195826.195827.

See Also
robotics.GeneralizedInverseKinematics | robotics.InverseKinematics |
robotics.RigidBodyTree

Related Examples
• “2-D Path Tracing With Inverse Kinematics” on page 8-2
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
• “Rigid Body Tree Robot Model” on page 7-68

 See Also

7-83

Manipulator Algorithms

• “2-D Path Tracing With Inverse Kinematics” on page 8-2
• “Solve Inverse Kinematics for a Four-Bar Linkage” on page 8-7
• “Robot Dynamics” on page 8-12
• “Calculate Manipulator Gravity Dynamics in Simulink” on page 8-14
• “Compute Velocity Product for Manipulators in Simulink” on page 8-16
• “Compute Geometric Jacobian for Manipulators in Simulink” on page 8-19
• “Get Transformations for Manipulator Bodies in Simulink” on page 8-21
• “Get Mass Matrix for Manipulators in Simulink” on page 8-24

8

2-D Path Tracing With Inverse Kinematics
Introduction

This example shows how to calculate inverse kinematics for a simple 2D manipulator
using the robotics.InverseKinematics class. The manipulator robot is a simple 2-
degree-of-freedom planar manipulator with revolute joints which is created by assembling
rigid bodies into a robotics.RigidBodyTree object. A circular trajectory is created in
a 2-D plane and given as points to the inverse kinematics solver. The solver calculates the
required joint positions to achieve this trajectory. Finally, the robot is animated to show
the robot configurations that achieve the circular trajectory.

Construct The Robot

Create a RigidBodyTree object and rigid bodies with their associated joints. Specify the
geometric properties of each rigid body and add it to the robot.

Start with a blank rigid body tree model.

robot = robotics.RigidBodyTree('DataFormat','column','MaxNumBodies',3);

Specify arm lengths for the robot arm.

L1 = 0.3;
L2 = 0.3;

Add 'link1' body with 'joint1' joint.

body = robotics.RigidBody('link1');
joint = robotics.Joint('joint1', 'revolute');
setFixedTransform(joint,trvec2tform([0 0 0]));
joint.JointAxis = [0 0 1];
body.Joint = joint;
addBody(robot, body, 'base');

Add 'link2' body with 'joint2' joint.

body = robotics.RigidBody('link2');
joint = robotics.Joint('joint2','revolute');
setFixedTransform(joint, trvec2tform([L1,0,0]));
joint.JointAxis = [0 0 1];
body.Joint = joint;
addBody(robot, body, 'link1');

8 Manipulator Algorithms

8-2

Add 'tool' end effector with 'fix1' fixed joint.

body = robotics.RigidBody('tool');
joint = robotics.Joint('fix1','fixed');
setFixedTransform(joint, trvec2tform([L2, 0, 0]));
body.Joint = joint;
addBody(robot, body, 'link2');

Show details of the robot to validate the input properties. The robot should have two non-
fixed joints for the rigid bodies and a fixed body for the end-effector.

showdetails(robot)

Robot: (3 bodies)

 Idx Body Name Joint Name Joint Type Parent Name(Idx) Children Name(s)
 --- --------- ---------- ---------- ---------------- ----------------
 1 link1 joint1 revolute base(0) link2(2)
 2 link2 joint2 revolute link1(1) tool(3)
 3 tool fix1 fixed link2(2)

Define The Trajectory

Define a circle to be traced over the course of 10 seconds. This circle is in the xy plane
with a radius of 0.15.

t = (0:0.2:10)'; % Time
count = length(t);
center = [0.3 0.1 0];
radius = 0.15;
theta = t*(2*pi/t(end));
points = center + radius*[cos(theta) sin(theta) zeros(size(theta))];

Inverse Kinematics Solution

Use an InverseKinematics object to find a solution of robotic configurations that
achieve the given end-effector positions along the trajectory.

Pre-allocate configuration solutions as a matrix qs.

q0 = homeConfiguration(robot);
ndof = length(q0);
qs = zeros(count, ndof);

 2-D Path Tracing With Inverse Kinematics

8-3

Create the inverse kinematics solver. Because the xy Cartesian points are the only
important factors of the end-effector pose for this workflow, specify a non-zero weight for
the fourth and fifth elements of the weight vector. All other elements are set to zero.

ik = robotics.InverseKinematics('RigidBodyTree', robot);
weights = [0, 0, 0, 1, 1, 0];
endEffector = 'tool';

Loop through the trajectory of points to trace the circle. Call the ik object for each point
to generate the joint configuration that achieves the end-effector position. Store the
configurations to use later.

qInitial = q0; % Use home configuration as the initial guess
for i = 1:count
 % Solve for the configuration satisfying the desired end effector
 % position
 point = points(i,:);
 qSol = ik(endEffector,trvec2tform(point),weights,qInitial);
 % Store the configuration
 qs(i,:) = qSol;
 % Start from prior solution
 qInitial = qSol;
end

Animate The Solution

Plot the robot for each frame of the solution using that specific robot configuration. Also,
plot the desired trajectory.

Show the robot in the first configuration of the trajectory. Adjust the plot to show the 2-D
plane that circle is drawn on. Plot the desired trajectory.

figure
show(robot,qs(1,:)');
view(2)
ax = gca;
ax.Projection = 'orthographic';
hold on
plot(points(:,1),points(:,2),'k')
axis([-0.1 0.7 -0.3 0.5])

8 Manipulator Algorithms

8-4

Set up a robotics.Rate object to display the robot trajectory at a fixed rate of 15
frames per second. Show the robot in each configuration from the inverse kinematic
solver. Watch as the arm traces the circular trajectory shown.

framesPerSecond = 15;
r = robotics.Rate(framesPerSecond);
for i = 1:count
 show(robot,qs(i,:)','PreservePlot',false);
 drawnow
 waitfor(r);
end

 2-D Path Tracing With Inverse Kinematics

8-5

See Also
InverseKinematics | Joint | RigidBody | RigidBodyTree

Related Examples
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”
• “Inverse Kinematics Algorithms” on page 7-79

8 Manipulator Algorithms

8-6

Solve Inverse Kinematics for a Four-Bar Linkage
This example shows how to solve inverse kinematics for a four-bar linkage, a simple
planar closed-chain linkage. Robotics System Toolbox™ doesn't directly support closed-
loop mechanisms. However, the loop-closing joints can be approximated using kinematic
constraints. This example shows how to setup a rigid body tree for a four-bar linkage,
specify the kinematic constraints, and solve for a desired end-effector position.

Initialize the four-bar linkage rigid body tree model.

robot = robotics.RigidBodyTree('Dataformat','column','MaxNumBodies',7);

Define body names, parent names, joint names, joint types, and fixed transforms in cell
arrays. The fixed transforms define the geometry of the four-bar linkage. The linkage
rotates in the xz-plane. An offset of -0.1 is used in the y-axis on the 'b4' body to isolate
the motion of the overlapping joints for 'b3' and 'b4'.

bodyNames = {'b1','b2','b3','b4','b5','b6'};
parentNames = {'base','b1','b2','base','b4','b5'};
jointNames = {'j1','j2','j3','j4','j5','j6'};
jointTypes = {'revolute','revolute','fixed','revolute','revolute','fixed'};
fixedTforms = {eye(4), ...
 trvec2tform([0 0 0.5]), ...
 trvec2tform([0.8 0 0]), ...
 trvec2tform([0.0 -0.1 0]), ...
 trvec2tform([0.8 0 0]), ...
 trvec2tform([0 0 0.5])};

Use a for loop to assemble the four-bar linkage:

• Create a rigid body and specify the joint type.
• Specify the JointAxis property for any non-fixed joints.
• Specify the fixed transformation.
• Add the body to the rigid body tree.

for k = 1:6

 b = robotics.RigidBody(bodyNames{k});
 b.Joint = robotics.Joint(jointNames{k},jointTypes{k});

 if ~strcmp(jointTypes{k},'fixed')
 b.Joint.JointAxis = [0 1 0];

 Solve Inverse Kinematics for a Four-Bar Linkage

8-7

 end

 b.Joint.setFixedTransform(fixedTforms{k});

 robot.addBody(b,parentNames{k});
end

Add a final body to function as the end-effector (handle) for the four-bar linkage.

bn = 'handle';
b = robotics.RigidBody(bn);
b.Joint.setFixedTransform(trvec2tform([0 -0.15 0]));
robot.addBody(b,'b6');

Specify kinematic constraints for the GeneralizedInverseKinematics object:

• Position constraint 1 : The origins of 'b3' body frame and 'b6' body frame should
always overlap. This keeps the handle in line with the approximated closed-loop
mechanism. Use the -0.1 offset for the y-coordinate.

• Position constraint 2 : End-effector should target the desired position.
• Joint limit bounds : Satisfy the joint limits in the rigid body tree model.

gik = robotics.GeneralizedInverseKinematics('RigidBodyTree',robot);
gik.ConstraintInputs = {'position',... % Position constraint for closed-loop mechanism
 'position',... % Position constraint for end-effector
 'joint'}; % Joint limits
gik.SolverParameters.AllowRandomRestart = false;

% Position constraint 1
positionTarget1 = robotics.PositionTarget('b6','ReferenceBody','b3');
positionTarget1.TargetPosition = [0 -0.1 0];
positionTarget1.Weights = 50;
positionTarget1.PositionTolerance = 1e-6;

% Joint limit bounds
jointLimBounds = robotics.JointPositionBounds(gik.RigidBodyTree);
jointLimBounds.Weights = ones(1,size(gik.RigidBodyTree.homeConfiguration,1))*10;

% Position constraint 2
desiredEEPosition = [0.9 -0.1 0.9]'; % Position is relative to base.
positionTarget2 = robotics.PositionTarget('handle');
positionTarget2.TargetPosition = desiredEEPosition;
positionTarget2.PositionTolerance = 1e-6;
positionTarget2.Weights = 1;

8 Manipulator Algorithms

8-8

Compute the kinematic solution using the gik object. Specify the initial guess and the
different kinematic constraints in the proper order.

iniGuess = homeConfiguration(robot);
[q, solutionInfo] = gik(iniGuess,positionTarget1,positionTarget2,jointLimBounds);

Examine the results in solutionInfo. Show the kinematic solution compared to the
home configuration. Plots are shown in the xz-plane.

loopClosingViolation = solutionInfo.ConstraintViolations(1).Violation;
jointBndViolation = solutionInfo.ConstraintViolations(2).Violation;
eePositionViolation = solutionInfo.ConstraintViolations(3).Violation;

subplot(1,2,1)
show(robot,homeConfiguration(robot));
title('Home Configuration')
view([0 -1 0]);
subplot(1,2,2)
show(robot,q);
title('GIK Solution')
view([0 -1 0]);

 Solve Inverse Kinematics for a Four-Bar Linkage

8-9

See Also
Classes
robotics.GeneralizedInverseKinematics | robotics.InverseKinematics |
robotics.JointPositionBounds | robotics.PoseTarget |
robotics.PositionTarget | robotics.RigidBodyTree

Related Examples
• “Rigid Body Tree Robot Model” on page 7-68

8 Manipulator Algorithms

8-10

• “Plan a Reaching Trajectory With Multiple Kinematic Constraints”
• “Control LBR Manipulator Motion Through Joint Torque Commands”

 See Also

8-11

Robot Dynamics
In this section...
“Dynamics Properties” on page 8-12
“Dynamics Functions” on page 8-13

Robot dynamics is the relationship between the forces acting on a robot and the resulting
motion of the robot. In Robotics System Toolbox, manipulator dynamics information is
contained within a RigidBodyTree object. This object describes a rigid body tree model
that has multiple RigidBody objects connected through Joint objects. The Joint,
RigidBody, and RigidBodyTree objects all contain information related to the robot
kinematics and dynamics.

Note To use dynamics functions, you must set the DataFormat property to 'row' or
'column'. This setting takes inputs and gives outputs as row or column vectors for
relevant robotics calculations, such as robot configurations or joint torques.

Dynamics Properties
When working with robot dynamics, specify the information for individual bodies of your
manipulator robot using properties on the RigidBody objects:

• Mass — Mass of the rigid body in kilograms.
• CenterOfMass — Center of mass position of the rigid body, specified as an [x y z]

vector. The vector describes the location of the center of mass relative to the body
frame in meters.

• Inertia — Inertia of rigid body, specified as an [Ixx Iyy Izz Iyz Ixz Ixy]
vector relative to the body frame in kilogram square meters. The first three elements
of the vector are the diagonal elements of the inertia tensor (moment of inertia). The
last three elements are the off-diagonal elements of the inertia tensor (product of
inertia). The inertia tensor is a positive definite matrix:

I I I

I I I

I I I

xx xy xz

xy yy yz

xz yz zz

Ê

Ë

Á
Á
ÁÁ

ˆ

¯

˜
˜
˜̃

8 Manipulator Algorithms

8-12

For information related to your whole manipulator robot model, specify these
RigidBodyTree object properties:

• Gravity — Gravitational acceleration experienced by the robot, specified as an [x y
z] vector in meters per second squared. By default, there is no gravitational
acceleration.

• DataFormat — The input and output data format for the kinematics and dynamics
functions. Set this property to 'row' or 'column' to use dynamics functions. This
setting takes inputs and gives outputs as row or column vectors for relevant robotics
calculations, such as robot configurations or joint torques.

Dynamics Functions
The following dynamics functions are available for robot manipulators. You can use these
functions after specifying all the relevant dynamics properties on your RigidBodyTree
robot model.

• forwardDynamics — Compute joint accelerations given joint torques and states
• inverseDynamics — Compute required joint torques given desired motion
• externalForce — Compose external force matrix relative to base
• gravityTorque — Compute joint torques that compensate gravity
• centerOfMass — Compute center of mass position and Jacobian
• massMatrix — Compute joint-space mass matrix
• velocityProduct — Compute joint torques that cancel velocity-induced forces

See Also
GeneralizedInverseKinematics | InverseKinematics | RigidBodyTree

Related Examples
• “Control LBR Manipulator Motion Through Joint Torque Commands”
• “Control PR2 Arm Movements Using ROS Actions and Inverse Kinematics”

 See Also

8-13

Calculate Manipulator Gravity Dynamics in Simulink
This example shows how to use the manipulator algorithm blocks to compute and
compare dynamics due to gravity for a manipulator robot.

Specify two similar robot models with different gravity accelerations. Load the KUKA LBR
robot model into the MATLAB® workspace and create a copy of it. For the first robot
model, lbr, specify a normal gravity vector, [0 0 -9.81]. For the copy, lbr2, use the
default gravity vector, [0 0 0]. These robot models are also specified in the Rigid body
tree parameters of the blocks in the model.

load('exampleLBR.mat','lbr')
lbr.DataFormat = 'column';
lbr2 = copy(lbr);
lbr.Gravity = [0 0 -9.81];

Open the gravity dynamics model. If needed, reload the robot models specified by the
MATLAB code using the Load Robot Models callback button.

open_system('gravity_dynamics_model.slx')

The Forward Dynamics block calculates the joint accelerations due to gravity for a given
lbr robot configuration with no initial velocity, torque, or external force. The Inverse
Dynamics block then computes the torques needed for the joint to create those same
accelerations with no gravity by using the lbr2 robot. Finally, the Gravity Torque block
calculates the torque required to counteract gravity for the lbr robot.

8 Manipulator Algorithms

8-14

Run the model. Besides some small numerical differences, the gravity torque and the
torque required for accelerations due to gravity are the same value with opposite
directions.

See Also
Blocks
Forward Dynamics | Get Jacobian | Gravity Torque | Inverse Dynamics | Joint Space Mass
Matrix | Velocity Product Torque

Classes
RigidBodyTree

Functions
externalForce | homeConfiguration | importrobot | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

 See Also

8-15

Compute Velocity Product for Manipulators in Simulink
This example shows how to calculate the velocity-induced torques for a robot manipulator
by using a robotics.RigidBodyTree model. In this example, you define a robot model
and robot configuration in MATLAB® and pass them to Simulink® to be used with the
manipulator algorithm blocks.

Load a RigidBodyTree object that models a KUKA LBR robot. Use the
homeConfiguration function to get the home configuration or home joint positions of
the robot.

load('exampleLBR.mat','lbr')
lbr.DataFormat = 'column';

homeConfig = homeConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the
robot model and configuration vector.

open_system('velocity_product_example.slx')

8 Manipulator Algorithms

8-16

 Compute Velocity Product for Manipulators in Simulink

8-17

Run the model. The Velocity Product block calculates the torques induced by the given
velocities. Verify these values by passing the same velocities to the Inverse Dynamics
block with no acceleration or external forces.

See Also
Blocks
Forward Dynamics | Get Jacobian | Gravity Torque | Inverse Dynamics | Joint Space Mass
Matrix

Classes
RigidBodyTree

Functions
externalForce | homeConfiguration | importrobot | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

8 Manipulator Algorithms

8-18

Compute Geometric Jacobian for Manipulators in
Simulink

This example shows how to calculate the geometric Jacobian for a robot manipulator by
using a robotics.RigidBodyTree model. The Jacobian maps the joint-space velocity to
the end-effector velocity relative to the base coordinate frame. In this example, you define
a robot model and robot configurations in MATLAB® and pass them to Simulink® to be
used with the manipulator algorithm blocks.

Load a RigidBodyTree object that models a KUKA LBR robot. Use the
homeConfiguration function to get the home configuration or home joint positions of
the robot. Use the randomConfiguration function to generate a random configuration
within the specified joint limits.

load('exampleRobots.mat','lbr')
lbr.DataFormat = 'column';
homeConfig = homeConfiguration(lbr);
randomConfig = randomConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the
robot model and the configuration vectors. The 'tool0' body is selected as the end-
effector in both blocks.

open_system('get_jacobian_example.slx')

 Compute Geometric Jacobian for Manipulators in Simulink

8-19

Run the model to display the Jacobian for each configuration.

See Also
Blocks
Forward Dynamics | Get Jacobian | Gravity Torque | Inverse Dynamics | Joint Space Mass
Matrix

Classes
RigidBodyTree

Functions
externalForce | homeConfiguration | importrobot | randomConfiguration

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

8 Manipulator Algorithms

8-20

Get Transformations for Manipulator Bodies in Simulink
This example shows how to get the transformation between bodies in a
robotics.RigidBodyTree robot model. In this example, you define a robot model and
robot configuration in MATLAB® and pass them to Simulink® to be used with the
manipulator algorithm block.

Load the robot model of the KUKA LBR robot as a RigidBodyTree object. Use the
homeConfiguration function to get the home configuration as joint positions of the
robot.

load('exampleLBR.mat','lbr')
lbr.DataFormat = 'column';

homeConfig = homeConfiguration(lbr);
randomConfig = randomConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the
robot model and configuration vectors.

The Get Transform block calculates the transformation from the source body to the target
body. This transformation converts coordinates from the source body frame to the given
target body frame. This example gives you transformations to convert coordinates from
the 'iiwa_link_ee' end effector to the 'world' base coordinates.

open_system('get_transform_example.slx')

 Get Transformations for Manipulator Bodies in Simulink

8-21

Run the model to get the transformations.

See Also
Blocks
Forward Dynamics | Get Jacobian | Get Transform | Gravity Torque | Inverse Dynamics |
Joint Space Mass Matrix

Classes
RigidBodyTree

Functions
homeConfiguration | importrobot | randomConfiguration

8 Manipulator Algorithms

8-22

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

 See Also

8-23

Get Mass Matrix for Manipulators in Simulink
This example shows how to calculate the mass matrix for a robot manipulator using a
robotics.RigidBodyTree model. In this example, you define a robot model and robot
configurations in MATLAB® and pass them to Simulink® to be used with the manipulator
algorithm blocks.

Load a RigidBodyTree object that models a KUKA LBR robot. Use the
homeConfiguration functions to get the home configuration or home joint positions of
the robot. Use the randomConfiguration function to generate a random configuration
within the robot joint limits.

load('exampleRobots.mat','lbr')
lbr.DataFormat = 'column';

homeConfig = homeConfiguration(lbr);
randomConfig = randomConfiguration(lbr);

Open the model. If necessary, use the Load Robot Model callback button to reload the
robot model and configuration vectors.

The Joint Space Mass Matrix block calculates the mass matrix for the given configuration.

open_system('mass_matrix_example.slx')

8 Manipulator Algorithms

8-24

Run the model to display the mass matrices for each configuration.

See Also
Blocks
Forward Dynamics | Get Jacobian | Get Transform | Gravity Torque | Inverse Dynamics

Classes
RigidBodyTree

Functions
homeConfiguration | importrobot | randomConfiguration

 See Also

8-25

Related Examples
• “Perform Safe Trajectory Tracking Control Using Robotics Manipulator Blocks”

8 Manipulator Algorithms

8-26

Application Design

• “Transform Laser Scan Data From A ROS Network” on page 9-2
• “Obstacle Avoidance with TurtleBot and VFH” on page 9-4
• “Execute Code at a Fixed-Rate” on page 9-7
• “Reduce Drift in 3-D Visual Odometry Trajectory Using Pose Graphs” on page 9-14
• “Build Occupancy Map from Depth Images Using Visual Odometry and Optimized Pose

Graph” on page 9-18

9

Transform Laser Scan Data From A ROS Network
Transform laser scan data using a ROS transformation tree. When working with laser
scan data, your sensor might not be mounted in the center of the robot. Many algorithms
make this assumption, so that you might need to transform your data so it is relative to
the robot center. This example uses a ROS transformation tree to receive the
transformations between different coordinate frames. To transform the sensor data, you
must be connected to a ROS network and have transformations available.

Setup and connect to a ROS network. Specify the IP address of the ROS device.

rosinit('192.168.203.129')

Initializing global node /matlab_global_node_43056 with NodeURI http://192.168.203.1:57424/

Create the ROS transformation tree using rostf. Get the transform between the '/
camera_link' and '/base_link' coordinate frames. These coordinate frame names
are dependent on your robot configuration.

tftree = rostf;
pause(1);
tf = getTransform(tftree,'/camera_link','/base_link',rostime('now'));

Extract the rotation and translation matrices from the transform.

quat = [tf.Transform.Rotation.W,...
 tf.Transform.Rotation.X,...
 tf.Transform.Rotation.Y,...
 tf.Transform.Rotation.Z];
rotm = quat2rotm(quat);
trvec = [tf.Transform.Translation.X,...
 tf.Transform.Translation.Y ...
 tf.Transform.Translation.Z];

Create a homogeneous transform by combining the translation and rotation matrices.

tform = trvec2tform(trvec);
tform(1:3,1:3) = rotm(1:3,1:3);

Set up a subscriber to get laser scan data. Get the laser scan data as Cartesian points.
Pad the points with zeros for the z-axis and convert them to homogeneous coordinates.

scansub = rossubscriber('/scan');
scan = receive(scansub)

9 Application Design

9-2

cartScanData = scan.readCartesian;
cartScanData(:,3) = 0;
homScanData = cart2hom(cartScanData);

scan =

 ROS LaserScan message with properties:

 MessageType: 'sensor_msgs/LaserScan'
 Header: [1×1 Header]
 AngleMin: -0.5216
 AngleMax: 0.5243
 AngleIncrement: 0.0016
 TimeIncrement: 0
 ScanTime: 0.0330
 RangeMin: 0.4500
 RangeMax: 10
 Ranges: [640×1 single]
 Intensities: [0×1 single]

 Use showdetails to show the contents of the message

Apply the homogeneous transform and convert scan data back to Cartesian points.

trPts = tform*homScanData';
cartScanDataTransformed = hom2cart(trPts');

Get the polar angles and ranges from the Cartesian Points.

[angles,ranges] = cart2pol(cartScanDataTransformed(:,1),...
 cartScanDataTransformed(:,2));

Shutdown ROS network.

rosshutdown

Shutting down global node /matlab_global_node_43056 with NodeURI http://192.168.203.1:57424/

See Also
apply | getTransform | robotics.VectorFieldHistogram | rostf

 See Also

9-3

Obstacle Avoidance with TurtleBot and VFH
This example shows how to use a TurtleBot® with Vector Field Histograms (VFH) to
perform obstacle avoidance when driving a robot in an environment. The robot wanders
by driving forward until obstacles get in the way. The
robotics.VectorFieldHistogram class computes steering directions to avoid objects
while trying to drive forward.

Optional: If you do not already have a TurtleBot (simulated or real) set up, install a
virtual machine with the Gazebo simulator and TurtleBot package. See “Get Started with
Gazebo and a Simulated TurtleBot” to install and set up a TurtleBot in Gazebo.

Connect to the TurtleBot using the IP address obtained from setup.

rosinit('192.168.203.129')

Initializing global node /matlab_global_node_68523 with NodeURI http://192.168.203.1:49546/

Create a publisher and subscriber to share information with the VFH class. The
subscriber receives the laser scan data from the robot. The publisher sends velocity
commands to the robot.

The topics used are for the simulated TurtleBot. Adjust the topic names for your specific
robot.

laserSub = rossubscriber('/scan');
[velPub, velMsg] = rospublisher('/mobile_base/commands/velocity');

Set up VFH object for obstacle avoidance. Specify algorithm properties for robot
specifications. Set target direction to 0 in order to drive straight.

vfh = robotics.VectorFieldHistogram;
vfh.DistanceLimits = [0.05 1];
vfh.RobotRadius = 0.1;
vfh.MinTurningRadius = 0.2;
vfh.SafetyDistance = 0.1;

targetDir = 0;

Set up a Rate object using robotics.Rate, which can track the timing of your loop. This
object can be used to control the rate the loop operates as well.

rate = robotics.Rate(10);

9 Application Design

9-4

Create a loop that collects data, calculates steering direction, and drives the robot. Set a
loop time of 30 seconds.

Use the ROS subscriber to collect laser scan data. Calculate the steering direction with
the VFH object based on the input laser scan data. Convert the steering direction to a
desired linear and an angular velocity. If a steering direction is not found, the robot stops
and searches by rotating in place.

Drive the robot by sending a message containing the angular velocity and the desired
linear velocity using the ROS publisher.

while rate.TotalElapsedTime < 30

 % Get laser scan data
 laserScan = receive(laserSub);
 ranges = double(laserScan.Ranges);
 angles = double(laserScan.readScanAngles);

 % Call VFH object to computer steering direction
 steerDir = vfh(ranges, angles, targetDir);

 % Calculate velocities
 if ~isnan(steerDir) % If steering direction is valid
 desiredV = 0.2;
 w = exampleHelperComputeAngularVelocity(steerDir, 1);
 else % Stop and search for valid direction
 desiredV = 0.0;
 w = 0.5;
 end

 % Assign and send velocity commands
 velMsg.Linear.X = desiredV;
 velMsg.Angular.Z = w;
 velPub.send(velMsg);
end

This code shows how you can use the Robotics System Toolbox™ algorithms to control
robots and react to dynamic changes in their environment. Currently the loop ends after
30 seconds, but other conditions can be set to exit the loop based on information on the
ROS network (i.e. robot position or number of laser scan messages).

Disconnect from the ROS network

rosshutdown

 Obstacle Avoidance with TurtleBot and VFH

9-5

Shutting down global node /matlab_global_node_68523 with NodeURI http://192.168.203.1:49546/

See Also
robotics.VectorFieldHistogram | rospublisher | rossubscriber

Related Examples
• “Get Started with Gazebo and a Simulated TurtleBot”
• “Communicate with the TurtleBot”

9 Application Design

9-6

Execute Code at a Fixed-Rate
In this section...
“Introduction” on page 9-7
“Send Fixed-rate Control Commands To A Robot” on page 9-7
“Fixed-rate Publishing of ROS Image Data” on page 9-9
“Overrun Actions for Fixed Rate Execution” on page 9-11

Introduction
Using the robotics.Rate object or the rosrate function allows you to time iterations
of your robotics applications. By executing code at constant intervals, you can accurately
time and schedule tasks. These examples show different applications for the Rate object
including its uses with ROS and sending commands for robot control.

Depending on your application, the rosrate function and robotics.Rate object offer
different options. If you would like to execute code based on the system time of your
computer, create an object using robotics.Rate. However, if you are connected to a
ROS network and want to base code execution on the ROS time, you can use the rosrate
function.

Send Fixed-rate Control Commands To A Robot
This example shows to send regular commands to a robot at a fixed rate. It uses the Rate
object to execute a loop that publishes std_msgs/Twist messages to the network at a
regular interval.

Setup ROS network. Specify the IP address if your ROS network already exists.

rosinit

Initializing ROS master on http://AH-SRADFORD:11311/.
Initializing global node /matlab_global_node_26621 with NodeURI http://AH-SRADFORD:50081/

Setup publisher and message for sending Twist commands.

[pub,msg] = rospublisher('/cmd_vel','geometry_msgs/Twist');
msg.Linear.X = 0.5;
msg.Angular.Z = -0.5;

 Execute Code at a Fixed-Rate

9-7

Create Rate object with specified loop parameters.

desiredRate = 10;
rate = robotics.Rate(desiredRate);
rate.OverrunAction = 'drop'

rate =

 Rate with properties:

 DesiredRate: 10
 DesiredPeriod: 0.1000
 OverrunAction: 'drop'
 TotalElapsedTime: 0.0300
 LastPeriod: NaN

Run loop and hold each iteration using waitfor(rate). Send the Twist message inside
the loop. Reset the Rate object before the loop to reset timing.

reset(rate)

while rate.TotalElapsedTime < 10
 send(pub,msg)
 waitfor(rate);
end

View statistics of fixed-rate execution. Look at AveragePeriod to verify the desired rate
was maintained.

statistics(rate)

ans =

 struct with fields:

 Periods: [1×100 double]
 NumPeriods: 100
 AveragePeriod: 0.1000
 StandardDeviation: 3.4189e-04
 NumOverruns: 0

Shut down ROS network

9 Application Design

9-8

rosshutdown

Shutting down global node /matlab_global_node_26621 with NodeURI http://AH-SRADFORD:50081/
Shutting down ROS master on http://AH-SRADFORD:11311/.

Fixed-rate Publishing of ROS Image Data
This example shows how to regularly publish and receive image messages using ROS and
the rosrate function. The rosrate function creates a Rate object to regularly access
the /camera/rgb/image_raw topic on the ROS network using a subscriber. The rgb
image is converted to a grayscale using rgb2gray and republished at a regular interval.
Parameters such as the IP address and topic names vary with your robot and setup.

Connect to ROS network. Setup subscriber, publisher, and data message.

ipaddress = '172.28.194.188'; % Replace with your network address
rosinit(ipaddress)
sub = rossubscriber('/camera/rgb/image_raw');
pub = rospublisher('/camera/gray/image_gray','sensor_msgs/Image');
msgGray = rosmessage('sensor_msgs/Image');
msgGray.Encoding = 'mono8';

Initializing global node /matlab_global_node_04172 with NodeURI http://172.28.194.235:61739/

Receive the first image message. Extract image and convert to a grayscale image. Display
grayscale image and publish the message.

msgImg = receive(sub);

img = readImage(msgImg);
grayImg = rgb2gray(img);
imshow(grayImg)

writeImage(msgGray,grayImg)
send(pub,msgGray)

 Execute Code at a Fixed-Rate

9-9

Create ROS Rate object to execute at 10 Hz. Set a loop time and the OverrunAction for
handling

desiredRate = 10;
loopTime = 5;
overrunAction = 'slip';
rate = rosrate(desiredRate);
r.OverrunAction = overrunAction;

Begin loop to receive, process and send messages every 0.1 seconds (10 Hz). Reset the
Rate object before beginning.

9 Application Design

9-10

reset(rate)

for i = 1:desiredRate*loopTime

 msgImg = receive(sub);

 img = readImage(msgImg);
 grayImg = rgb2gray(img);
 writeImage(msgGray,grayImg)

 send(pub,msgGray)

 waitfor(rate);
end

View the statistics for the code execution. AveragePeriod and StandardDeviation
show how well the code maintained the desiredRate. OverRuns occur when data
processing takes longer than the desired period length.

statistics(rate)

ans =

 Periods: [1x50 double]
 NumPeriods: 50
 AveragePeriod: 0.1024
 StandardDeviation: 0.0193
 NumOverruns: 1

Shut down ROS node

rosshutdown

Shutting down global node /matlab_global_node_04172 with NodeURI http://172.28.194.235:61739/

Overrun Actions for Fixed Rate Execution
The Rate object uses the OverrunAction property to decide how to handle code that
takes longer than the desired period to operate. The options are 'slip' (default) or
'drop'. This example shows how the OverrunAction affects code execution.

 Execute Code at a Fixed-Rate

9-11

Setup desired rate and loop time. slowFrames is an array of times when the loop should
be stalled longer than the desired rate.

desiredRate = 1;
loopTime = 20;
slowFrames = [3 7 12 18];

Create the Rate object and specify the OverrunAction property. 'slip' indicates that
the waitfor function will return immediately if the time for LastPeriod is greater than
the DesiredRate property.

rate = robotics.Rate(desiredRate);
rate.OverrunAction = 'slip';

Reset Rate object and begin loop. This loop will execute at the desired rate until the loop
time is reached. When the TotalElapsedTime reaches a slow frame time, it will stall for
longer than the desired period.

reset(rate);

while rate.TotalElapsedTime < loopTime
 if ~isempty(find(slowFrames == floor(rate.TotalElapsedTime)))
 pause(desiredRate + 0.1)
 end
 waitfor(rate);
end

View statistics on the Rate object. Notice the number of periods.

stats = statistics(rate)

stats = struct with fields:
 Periods: [1x20 double]
 NumPeriods: 20
 AveragePeriod: 1.0207
 StandardDeviation: 0.0432
 NumOverruns: 4

Change the OverrunAction to 'drop'. 'drop' indicates that the waitfor function will
return at the next time step, even if the LastPeriod is greater than the DesiredRate
property. This effectively drops the iteration that was missed by the slower code
execution.

rate.OverrunAction = 'drop';

9 Application Design

9-12

Reset Rate object and begin loop.

reset(rate);

while rate.TotalElapsedTime < loopTime
 if ~isempty(find(slowFrames == floor(rate.TotalElapsedTime)))
 pause(1.1)
 end
 waitfor(rate);
end
stats2 = statistics(rate)

stats2 = struct with fields:
 Periods: [1x16 double]
 NumPeriods: 16
 AveragePeriod: 1.2501
 StandardDeviation: 0.4483
 NumOverruns: 4

Using the 'drop' over run action resulted in 16 periods when the 'slip' resulted in 20
periods. This difference is because the 'slip' did not wait until the next interval based
on the desired rate. Essentially, using 'slip' tries to keep the AveragePeriod property
as close to the desired rate. Using 'drop' ensures the code will execute at an even
interval relative to DesiredRate with some iterations being skipped.

See Also
robotics.Rate | rosrate | waitfor

 See Also

9-13

Reduce Drift in 3-D Visual Odometry Trajectory Using
Pose Graphs

This example shows how to reduce the drift in the estimated trajectory (location and
orientation) of a monocular camera using 3-D pose graph optimization.

Visual odometry estimates the current global pose of the camera (current frame). Because
of poor matching or errors in 3-D point triangulation, robot trajectories often tends to
drift from the ground truth. Loop closure detection and pose graph optimization reduce
this drift and correct for errors.

Load Estimated Poses for Pose Graph Optimization

Load the estimated camera poses and loop closure edges. Estimated camera poses are
computed using visual odometry. Loop closure edges are computed by finding previous
frame which saw the current scene and estimating the relative pose between the current
frame and the loop closure candidate. Camera frames are sampled from [1].

% Estimated poses
load('estimatedpose.mat');
% Loopclosure edge
load('loopedge.mat');
% Groundtruth camera locations
load('groundtruthlocations.mat');

Build 3-D Pose Graph

Create an empty pose graph.

posegraph3D = robotics.PoseGraph3D;

Add nodes to the pose graph, with edges defining the relative pose and information
matrix for the pose graph. Convert the estimated poses, given as transformations, to
relative poses as an [x y theta qw qx qy qz] vector. An identity matrix is used for
the information matrix for each pose.

len = size(estimatedPose,2);
informationmatrix = [1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1];
% Insert relative poses between all successive frames
for k = 2:len
 % Relative pose between current and previous frame
 relativePose = estimatedPose{k-1}/estimatedPose{k};

9 Application Design

9-14

 % Relative orientation represented in quaternions
 relativeQuat = tform2quat(relativePose);
 % Relative pose as [x y theta qw qx qy qz]
 relativePose = [tform2trvec(relativePose),relativeQuat];
 % Add pose to pose graph
 addRelativePose(posegraph3D,relativePose,informationmatrix);
end

Add a loop closure edge. Add this edge between two existing nodes from the current
frame to a previous frame.

% Convert pose from transformation to pose vector.
relativeQuat = tform2quat(loopedge);
relativePose = [tform2trvec(loopedge),relativeQuat];
% Loop candidate
loopcandidateframeid = 1;
% Current frame
currentframeid = 100;

addRelativePose(posegraph3D,relativePose,informationmatrix,...
 loopcandidateframeid,currentframeid);

figure
show(posegraph3D);

 Reduce Drift in 3-D Visual Odometry Trajectory Using Pose Graphs

9-15

Optimize the pose graph. The nodes are adjusted based on the edge constraints to
improve the overall pose graph. To see the change in drift, plot the estimated poses and
the new optimized poses against the ground truth.

% Pose graph optimization
optimizedPosegraph = optimizePoseGraph(posegraph3D);
optimizedposes = nodes(optimizedPosegraph);
% Camera trajectory plots
figure
estimatedposes = nodes(posegraph3D);
plot3(estimatedposes(:,1),estimatedposes(:,2),estimatedposes(:,3),'r');
hold on
plot3(groundtruthlocations(:,1),groundtruthlocations(:,2),groundtruthlocations(:,3),'g');
plot3(optimizedposes(:,1),optimizedposes(:,2),optimizedposes(:,3),'b');

9 Application Design

9-16

hold off
legend('Estimated pose graph','Ground truth pose graph', 'Optimized pose graph');
view(-20.8,-56.4);

References

[1] Galvez-López, D., and J. D. Tardós. "Bags of Binary Words for Fast Place Recognition in
Image Sequences." IEEE Transactions on Robotics. Vol. 28, No. 5, 2012, pp. 1188-1197.

See Also
addRelativePose | optimizePoseGraph | robotics.PoseGraph3D

 See Also

9-17

Build Occupancy Map from Depth Images Using Visual
Odometry and Optimized Pose Graph

Introduction

This example shows how to reduce the drift in the estimated trajectory (location and
orientation) of a monocular camera using 3-D pose graph optimization. In this example,
you build an occupancy map from the depth images, which can be used for path planning
while navigating in that environment.

Load Estimated Poses for Pose Graph Optimization

Load the estimated camera poses and loop closure edges. The estimated camera poses
were computed using visual odometry. The loop closure edges were computed by finding
the previous frame that saw the current scene and estimating the relative pose between
the current frame and the loop closure candidate. Camera frames are sampled from a
data set that contains depth images, camera poses, and ground truth locations [1].

load('estimatedpose.mat'); % Estimated poses
load('loopedge.mat'); % Loopclosure edge
load('groundtruthlocations.mat'); % Ground truth camera locations

Build 3-D Pose Graph

Create an empty pose graph.

posegraph3D = robotics.PoseGraph3D;

Add nodes to the pose graph, with edges defining the relative pose and information
matrix for the pose graph. Convert the estimated poses, given as transformations, to
relative poses as an [x y theta qw qx qy qz] vector. An identity matrix is used for
the information matrix for each pose.

len = size(estimatedPose,2);
informationmatrix = [1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1];
% Insert relative poses between all successive frames
for k = 2:len
 % Relative pose between current and previous frame
 relativePose = estimatedPose{k-1}/estimatedPose{k};
 % Relative orientation represented in quaternions
 relativeQuat = tform2quat(relativePose);
 % Relative pose as [x y theta qw qx qy qz]
 relativePose = [tform2trvec(relativePose),relativeQuat];

9 Application Design

9-18

 % Add pose to pose graph
 addRelativePose(posegraph3D,relativePose,informationmatrix);
end

Add a loop closure edge. Add this edge between two existing nodes from the current
frame to a previous frame. Optimize the pose graph to adjust nodes based on the edge
constraints and this loop closure. Store the optimized poses.

% Convert pose from transformation to pose vector.
relativeQuat = tform2quat(loopedge);
relativePose = [tform2trvec(loopedge),relativeQuat];
% Loop candidate
loopcandidateframeid = 1;
% Current frame
currentframeid = 100;

addRelativePose(posegraph3D,relativePose,informationmatrix,...
 loopcandidateframeid,currentframeid);

optimizedPosegraph = optimizePoseGraph(posegraph3D);
optimizedposes = nodes(optimizedPosegraph);

figure;
show(posegraph3D);

 Build Occupancy Map from Depth Images Using Visual Odometry and Optimized Pose Graph

9-19

Create Occupancy Map from Depth Images and Optimized Poses

Load the depth images and camera parameters from the dataset [1].

load('depthimagearray.mat'); % variable depthImages
load('freburgK.mat'); % variable K

Create a 3-D occupancy map with a resolution of 50 cells per meter. Read in the depth
images iteratively and convert the points in the depth image using the camera parameters
and the optimized poses of the camera. Insert the points as point clouds at the optimized
poses to build the map. Show the map after adding all the points. Because there are many
depth images, this step can take several minutes. Consider uncommenting the fprintf
command to print the progress the image processing.

9 Application Design

9-20

occupancymap = robotics.OccupancyMap3D(50);

for k = 1:length(depthImages)
 points3D = exampleHelperExtract3DPointsFromDepthImage(depthImages{k},K);
 % fprintf('Processing Image %d\n', k);
 insertPointCloud(occupancymap,optimizedposes(k,:),points3D,1.5);
end
figure;
show(occupancymap);
view(-2.4,-90);

 Build Occupancy Map from Depth Images Using Visual Odometry and Optimized Pose Graph

9-21

References

[1] Galvez-López, D., and J. D. Tardós. "Bags of Binary Words for Fast Place Recognition in
Image Sequences." IEEE Transactions on Robotics. Vol. 28, No. 5, 2012, pp. 1188-1197.

See Also
addRelativePose | insertPointCloud | optimizePoseGraph |
robotics.OccupancyMap3D | robotics.PoseGraph3D

9 Application Design

9-22

Code Generation

• “Code Generation from MATLAB Code” on page 10-2
• “Code Generation Support, Usage Notes and Limitations” on page 10-4
• “Generate Code to Manually Deploy a ROS Node from Simulink” on page 10-7
• “Accelerate Robotics Algorithms with Code Generation” on page 10-13
• “Enable External Mode for Robotics System Toolbox Models” on page 10-17
• “Tune Parameters and View Signals on Deployed Robot Models Using External Mode”

on page 10-18

10

Code Generation from MATLAB Code
Several Robotics System Toolbox functions are enabled to generate C/C++ code. Code
generation from MATLAB code requires the MATLAB Coder™ product. To generate code
from robotics functions, follow these steps:

• Write your function or application that uses Robotics System Toolbox functions that
are enabled for code generation. For code generation, some of these functions have
requirements that you must follow. See “Code Generation Support, Usage Notes and
Limitations” on page 10-4.

• Add the %#codegen directive to your MATLAB code.
• Follow the workflow for code generation from MATLAB code using either the MATLAB

Coder app or the command-line interface.

Using the app, the basic workflow is:

1 Set up a project. Specify your top-level functions and define input types.

The app screens your code for code generation readiness. It reports issues such as a
function that is not supported for code generation.

2 Check for run-time issues.

The app generates and runs a MEX version of your function. This step detects issues
that can be hard to detect in the generated C/C++ code.

3 Configure the code generation settings for your application.
4 Generate C/C++ code.
5 Verify the generated C/C++ code. If you have an Embedded Coder® license, you can

use software-in-the-loop execution (SIL) or processor-in-the-loop (PIL) execution.

For a tutorial, see “C Code Generation Using the MATLAB Coder App” (MATLAB Coder).

Using the command-line interface, the basic workflow is:

• To detect issues and verify the behavior of the generated code, generate a MEX
version of your function.

• Use coder.config to create a code configuration object for a library or executable.
• Modify the code configuration object properties as required for your application.
• Generate code using the codegen command.

10 Code Generation

10-2

• Verify the generated code. If you have an Embedded Coder license, you can use
software-in-the-loop execution (SIL) or processor-in-the-loop (PIL) execution.

For a tutorial, see “C Code Generation at the Command Line” (MATLAB Coder).

See Also

More About
• “Code Generation Support, Usage Notes and Limitations” on page 10-4

 See Also

10-3

Code Generation Support, Usage Notes and Limitations
To generate code from MATLAB code that contains Robotics System Toolbox functions,
classes, or System objects, you must have the MATLAB Coder software.

The following functions support code generation using MATLAB Coder, but may have
some limitations.

An asterisk (*) indicates that the reference page has usage notes and limitations for C/C+
+ code generation.

Algorithm Design
robotics.AimingConstraint
robotics.BinaryOccupancyGrid
robotics.CartesianBounds
robotics.GeneralizedInverseKinematics*
robotics.InverseKinematics*
robotics.Joint
robotics.JointPositionBounds
lidarScan
matchScans
matchScansGrid
robotics.OccupancyGrid
robotics.OdometryMotionModel
robotics.OrientationTarget
robotics.ParticleFilter*
robotics.PoseTarget
robotics.PositionTarget
robotics.PRM
robotics.PurePursuit
robotics.RigidBody
robotics.RigidBodyTree*

10 Code Generation

10-4

transformScan
robotics.VectorFieldHistogram
Coordinate System Transformations
angdiff
axang2quat
axang2rotm
axang2tform
cart2hom
eul2quat
eul2rotm
eul2tform
hom2cart
quat2axang
quat2eul
quat2rotm
quat2tform
rotm2axang
rotm2eul
rotm2quat
rotm2tform
tform2axang
tform2eul
tform2quat
tform2rotm
tform2trvec
trvec2tform

 Code Generation Support, Usage Notes and Limitations

10-5

See Also

More About
• “Code Generation from MATLAB Code” on page 10-2

10 Code Generation

10-6

Generate Code to Manually Deploy a ROS Node from
Simulink

This example shows you how to generate C++ code from a Simulink model to deploy as a
standalone ROS node. The code is generated on your computer and must be manually
transferred to the target ROS device. No connection to the hardware is necessary for
generated the code. For an automated deployment of a ROS node, see “Generate a
Standalone ROS Node from Simulink®”.

Prerequisites
• This example requires Simulink Coder.
• A Ubuntu Linux system with ROS is necessary for building and running the generated

C++ code. You can use your own Ubuntu ROS system, or you can use the Linux virtual
machine used for Robotics System Toolbox examples. See “Get Started with Gazebo
and a Simulated TurtleBot” for instructions on how to install and use the virtual
machine.

• Review the “Feedback Control of a ROS-enabled Robot” example, which details the
Simulink model that the code is being generated from.

Configure A Model for Code Generation
Configure a model to generate C++ code for a standalone ROS node using the
Configuration Parameters. The model used here is the proportional controller
introduced in the “Feedback Control of a ROS-enabled Robot” example.

Open the proportional controller model.

edit robotROSFeedbackControlExample

Copy the entire model to a new blank Simulink model. In the menu, Click Edit > Select
All, then Edit > Copy.

Open a new Simulink model. In the menu, Click Edit > Paste.

Delete the Simulation Rate Control block.

Open the Configuration Parameters dialog. Click Simulation > Model Configuration
Parameters.

 Generate Code to Manually Deploy a ROS Node from Simulink

10-7

In the Hardware Implementation pane, set the Hardware board to Robot
Operating System (ROS).

The Hardware board settings section contains settings specific to the generated ROS
package, such as information included in the package.xml file. Change Maintainer
name to ROS Example User and click OK.

In the Solver pane of the Configuration Parameters dialog, ensure the Type is set to
Fixed-step, and the Fixed-step size is set to 0.05. In generated code, the fixed-step
size defines the actual time step that is used for the model update loop. See “Execution of
Code Generated from a Model” (Simulink Coder) for more information.

10 Code Generation

10-8

Click OK to close the Configuration Parameters dialog. Save the model as
RobotController.slx.

Configure the Build Options for Code Generation
After configuring the model, you must specify the build options for the target hardware
and set the folder or building the generated code.

Open the Configuration Parameters dialog. Click Simulation > Model Configuration
Parameters.

In the Hardware Implementation tab, under Hardware board settings, click the
Build options group. Set the Build action to None. This setting ensures that code
generated for the ROS node without building it on an external ROS device.

 Generate Code to Manually Deploy a ROS Node from Simulink

10-9

Generate and Deploy the Code
Start a ROS master in MATLAB. This ROS master is used by Simulink for the code
generation steps.

In the MATLAB command window type:

rosinit

Set the current folder to a writable directory. This folder is the location that generate
code will be stored when you build the model.

In Simulink, click Code > C/C++ Code > Deploy to Hardware or press Ctrl+B to start
code generation for the model.

Once the build completes, two new files are written to your folder.

• RobotController.tgz–– An archive containing the C++ code
• build_ros_model.sh –– A shell script for extracting and building the C++ code

10 Code Generation

10-10

Manually transfer the two files to the target machine. If you connect to a ROS device
using rosdevice, you can send files using putFile. Otherwise, this step assumes you
are using the Linux virtual machine used for Robotics System Toolbox examples. The
virtual machine is configured to accept SSH and SCP connections. If you are using your
own Linux system, consult your system administrator for a secure way to transfer files.

Ensure your host system (the system with your RobotController.tgz and
build_ros_model.sh files) has an SCP client. For systems, the next step assumes that
PuTTY SCP client (pcsp.exe) is installed.

Use SCP to transfer the files to the user home director on the Linux virtual machine.
Username is user and password is password. Replace <virtual_machine_ip> with
your virtual machines IP address.

• Windows host systems:

pscp.exe RobotController.tgz build_ros_model.sh user@<virtual_machine_ip>:
• Linux or host systems:

scp RobotController.tgz build_ros_model.sh user@<virtual_machine_ip>:

The build_ros_model.sh file is not specific to this model. It only needs to be
transferred once for multiple models.

On the Linux system, execute the following commands to create a Catkin workspace. You
may use an existing Catkin workspace.

mkdir -p ~/catkin_ws_simulink/src
cd ~/catkin_ws_simulink/src
catkin_init_workspace

Decompress and build the node there using the following command in Linux. Replace
<path_to_catkin_ws> with the path to your catkin workspace.

cd ~
./build_ros_model.sh RobotController.tgz <path_to_catkin_ws>

The generated source code is under ~/catkin_ws_simulink/src/
robotcontroller/. Review the contents of the package.xml file. Verify that the node
executable was created using:

file ~/catkin_ws_simulink/devel/lib/robotcontroller/robotcontroller_node

If the executable was created successfully, the command lists information about the file.

 Generate Code to Manually Deploy a ROS Node from Simulink

10-11

The model is now ready to be run as a standalone ROS node on your device.

Optional: You can then run the node using this command. Replace
<path_to_catkin_ws> with the path to your catkin workspace.

~/<path_to_catkin_workspace>/devel/lib/robotcontroller/robotcontroller_node

See Also

More About
• “Feedback Control of a ROS-enabled Robot”
• “Generate a Standalone ROS Node from Simulink®”
• “Tune Parameters and View Signals on Deployed Robot Models Using External

Mode” on page 10-18

10 Code Generation

10-12

Accelerate Robotics Algorithms with Code Generation
In this section...
“Create Separate Function for Algorithm” on page 10-13
“Perform Code Generation for Algorithm” on page 10-14
“Check Performance of Generated Code” on page 10-14
“Replace Algorithm Function with MEX Function” on page 10-15

You can generate code for select Robotics System Toolbox algorithms to speed up their
execution. Set up the algorithm that supports code generation as a separate function that
you can insert into your workflow. To use code generation, you must have a MATLAB
Coder license. For a summary of code generation support in Robotics System Toolbox, see
“Code Generation”.

For this example, a robot is wandering in an environment using the
VectorFieldHistogram class with laser scan data to perform obstacle avoidance. The
goal is to replace the vector field histogram (VFH) algorithm with a MEX file created from
code generation.

To see this example without code generation, see “Obstacle Avoidance with TurtleBot and
VFH” on page 9-4.

Create Separate Function for Algorithm
Create a separate function, vfhCodeGen, that runs the vector field algorithm. Create a
VFH object and specify the algorithm parameters. Call the object as the main function to
use the VFH algorithm. Specify %#codegen inside the function to identify it as a function
for code generation.

function steerDir = vfhCodeGen(ranges,angles,targetDir)
 %#codegen
 vfh = robotics.VectorFieldHistogram;
 vfh.DistanceLimits = [0.05 1];
 vfh.RobotRadius = 0.1;
 vfh.MinTurningRadius = 0.2;
 vfh.SafetyDistance = 0.1;

 steerDir = vfh(ranges,angles,targetDir);
end

 Accelerate Robotics Algorithms with Code Generation

10-13

Save the function in your current folder.

Perform Code Generation for Algorithm
You can use either the codegen function or the MATLAB Coder app to generate code.
In this example, you generate a MEX file by callingcodegen on the MATLAB command
line. Specify sample input arguments for each input to the function using the -args input
argument

Specify sample values for the input arguments. Create a sample of the ranges, angles,
and target directions. The TurtleBot laser scan gives 640 scans.

ranges = zeros(640,1);
angles = zeros(640,1);
targetDir = 0;

Call the codegen function and specify the input arguments in a cell array. This function
creates a separate vfhCodeGen_mex function to use. You can also produce C code by
using the options input argument.

codegen vfhCodeGen -args {ranges,angles,targetDir}

If your laser scan can come from different sources with variable-size lengths, specify the
canonical type of the ranges and angles inputs by using coder.typeof with the
codegen function.

codegen vfhCodeGen -args {coder.typeof(ranges,[Inf 1]), ...
 coder.typeof(angles,[Inf 1]),targetDir}

Check Performance of Generated Code
Compare the timing of the generated MEX function to the timing of your original function
by using timeit.

time = timeit(@() vfhCodeGen(ranges,angles,targetDir))
mexTime = timeit(@() vfhCodeGen_mex(ranges,angles,targetDir))

time =

 0.0039

10 Code Generation

10-14

mexTime =

 7.6490e-05

The MEX function runs over 50 times faster in this example. Results might vary in your
system.

Replace Algorithm Function with MEX Function
Open the main function for running your robotics workflow. Replace the vfh object call
with the MEX function that you created using code generation.

Open the “Obstacle Avoidance with TurtleBot and VFH” on page 9-4 example.

openExample('robotics/ObstacleAvoidanceWithTurtleBotAndVFHExample')

Modify the example code to use the new vfhCodeGen_mex function. The code that
follows is a copy of the example with modified comments and use of the new MEX
function. The definition of the VFH object is also removed.

Connect to the TurtleBot. Set up the laser scan subscriber, the velocity publisher, and the
rate control object. Specify a starting target direction.

rosinit('192.168.154.131')
laserSub = rossubscriber('/scan');
[velPub, velMsg] = rospublisher('/mobile_base/commands/velocity');
rate = robotics.Rate(10);
targetDir = 0;

Create a loop that collects data, calculates the steering direction, and drives the robot.
Set a loop time of 30 seconds. Replace the step call with vfhCodeGen_mex.

while rate.TotalElapsedTime < 30

 % Get laser scan data
 laserScan = receive(laserSub);
 ranges = double(laserScan.Ranges);
 angles = double(readScanAngles(laserScan));

 % Call MEX function created using code generation
 steerDir = vfhCodeGen_mex(ranges,angles,targetDir);

 % Calculate velocities

 Accelerate Robotics Algorithms with Code Generation

10-15

 if ~isnan(steerDir) % If steering direction is valid
 desiredV = 0.2;
 w = exampleHelperComputeAngularVelocity(steerDir,1);
 else % Stop and search for valid direction
 desiredV = 0.0;
 w = 0.5;
 end

 % Assign and send velocity commands
 velMsg.Linear.X = desiredV;
 velMsg.Angular.Z = w;
 send(velPub,velMsg);
end

The robot performs 30 seconds of obstacle avoidance using the MEX function. For this
application, the time difference of the VFH algorithm is minimal, but you can use this
example to help you replace other algorithms with generated code. Consider using code
generation in areas of your code that slow down the workflow.

Disconnect from the ROS network.

rosshutdown

See Also
VectorFieldHistogram | codegen | timeit

Related Examples
• “Obstacle Avoidance with TurtleBot and VFH” on page 9-4
• “Code Generation Support, Usage Notes and Limitations” on page 10-4
• “Generate a Standalone ROS Node from Simulink®”
• “C Code Generation at the Command Line” (MATLAB Coder)
• “C Code Generation Using the MATLAB Coder App” (MATLAB Coder)

10 Code Generation

10-16

Enable External Mode for Robotics System Toolbox
Models

External mode enables Simulink on your host computer to communicate with a deployed
model on your robotics hardware during runtime. External mode allows you to tune block
mask parameters and to visualize signals on your model while your model is running. For
Robotics System Toolbox, deployed models are ROS nodes running on the target
hardware that communicates with Simulink over TCP/IP.

To use external mode with Robotics System Toolbox models:

1 Open the Configuration Parameters dialog box.
2 On the Hardware Implementation pane, specify the Hardware board as Robot

Operating System (ROS). Specify related parameters in Target Hardware
Resources.

3 In Target Hardware Resources, set the External mode parameters. Click OK.
4 In the model, set the Simulation mode to External for the model.
5 Run the model.

Your model connects to the Device Address specified in the “Connect to ROS Device” on
page 6-15 dialog box which is used to connect to your ROS device when deploying the
model.

To configure signal monitoring and data archiving, go to the Code menu and select
External Mode Control Panel. You can also connect to the target program and start and
stop execution of the model code. For more information, see “Host-Target Communication
with External Mode Simulation” (Simulink Coder).

See Also

Related Examples
• “Generate a Standalone ROS Node from Simulink®”
• “Tune Parameters and View Signals on Deployed Robot Models Using External

Mode” on page 10-18
• “Host-Target Communication with External Mode Simulation” (Simulink Coder)

 Enable External Mode for Robotics System Toolbox Models

10-17

Tune Parameters and View Signals on Deployed Robot
Models Using External Mode

In this section...
“Set Up the Simulink Model” on page 10-18
“Deploy and Run the Model” on page 10-19
“Monitor Signals and Tune Parameters” on page 10-20

External mode enables Simulink models on your host computer to communicate with a
deployed model on your robot hardware during runtime. Use external mode to view
signals or modify block mask parameters on your deployed Simulink model. Parameter
tuning with external mode helps you make adjustments to your algorithms as they run on
the hardware as opposed to in simulation in Simulink itself. This example shows how to
use external mode with the “Feedback Control of a ROS-enabled Robot” example when
the model is deployed to the robot hardware.

Set Up the Simulink Model
Configure the Simulink model to deploy to the robot hardware and enable external mode.

Open the model.

robotROSFeedbackControlExample

Set the configuration parameters of the model.

1 In the Simulation menu, click Model Configuration Parameters to open the
Configuration Parameters dialog box.

2 On the Solver pane, set Type to Fixed-step and the Fixed-step size to 0.05.
3 On the Hardware Implementation pane, specify the Hardware board as Robot

Operating System (ROS). Specify related parameters in Target Hardware
Resources.

4 In Build Options, set the Build action to Build and run. By default, Simulink
always uses Build and run when using external mode.

5 In Target Hardware Resources, set the External mode parameters. To prioritize
model execution speed, enable Run external mode in a background thread.

10 Code Generation

10-18

6 In the model, set the Simulation mode to External.

In the model, add scope blocks to the signals you want to view. For this example, add an
XY Graph scope to the X and Y signals that are attached to the ROS subscriber that
monitors the robot position. Open the block and change the minimum and maximum
values for each axis to [-10 10].

Deploy and Run the Model
Now that the model is configured, you can deploy and run the model on the robot
hardware.

Connect to the ROS network by setting the network address. The network must be
running on your target robotics hardware. This example uses the "Gazebo Empty”
simulator environment is used from the Virtual Machine with ROS Hydro and Gazebo for
Robotics System Toolbox example. In the Tools menu, under Robotics Operating
System, select Configure Network Addresses. Specify your device address by selecting
Custom under Network Address and specifying the IP address or host name under
Hostname/IP Address. For this virtual machine, the IP address is 192.168.154.131.

 Tune Parameters and View Signals on Deployed Robot Models Using External Mode

10-19

https://www.mathworks.com/robotics/v3/ros_vm_install
https://www.mathworks.com/robotics/v3/ros_vm_install

Run the model. The model is deployed to the robot hardware and runs after the build
process is complete. This step might take some time.

Monitor Signals and Tune Parameters
After you deploy the model and the model is running, you can view its signals and modify
its parameters.

While the model runs on the hardware, view the XY Graph window to monitor the robot
position over time.

The path has a slight wobble, which is due to the high velocity of the robot as it tracks the
path.

While the model is still running, you can also tune parameters. Open the Proportional
Controller subsystem and change the Linear Velocity slider to 0.25. Back in the main
model, change the Desired Position constant block to a new position, [0 -5]. The robot
drives to the new position slower.

10 Code Generation

10-20

The lowered velocity reduces the wobble along the path. All these modifications were
done while the model was deployed on the hardware.

See Also

Related Examples
• “Feedback Control of a ROS-enabled Robot”
• “Enable External Mode for Robotics System Toolbox Models” on page 10-17
• “Generate a Standalone ROS Node from Simulink®”
• “Host-Target Communication with External Mode Simulation” (Simulink Coder)

 See Also

10-21

